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Introduction
Cancer is globally one of the major public health concerns [1]. 

The number of new cases is estimated to hit nearly 15 million in each 
year in the immediate future, and the global cancer rates are set to 
double by 2020 [2]. Surgery, chemotherapy, and radiation therapy 
are the primary treatment options for cancer therapy [3]. However, 
these treatments are often unsatisfactory and lead to harmful adverse 
side effects on healthy organs and tissues. Hence,  Many new cancer 
therapies are being established to overcome these obstacles. Due 
to recent advances in endogenous RNA interference molecular 
mechanisms, small interfering RNAs (siRNAs) have attracted 
innovative nucleic acid medicines to treat diseases, including cancers 
[4, 5]. Several siRNA drugs are undergoing clinical trials to treat 
several diseases, such as ocular and respiratory diseases [6]. There 
are many inherent challenges in further improving siRNAs for better 
anticancer therapeutics, where in most cases, systemic administration 
is required and selective delivery remains a major hurdle [7-10]. 

Nanotechnology is referred to as the processing, characterization, 
synthesis, and use of nanomaterials of nanometer-scale [11]. The 
use of nanotechnology in medicine, known as nanomedicine, has 
significantly accelerated the detection, visualization, and treatment of 
various diseases [12]. Nanotechnology has been a possible approach 
for designing nanoparticles as medical devices in cancer therapy [13]. 
Another most significant aspect of such innovative preparations is that 
in comparison to healthy cells, these selectively attack tumor cells via 
the improved permeability and retention (EPR) tendency experienced 
by solid tumors [14]. Furthermore, nanomaterials as pharmaceutical 
vectors have some other unique features with significant biological 
effectiveness, lesser side effects, and hydrophobic drug encapsulation 
and distribution capacity [15]. An actively growing research area of 
cancer medicine is developing nanoparticles of uniform shape, size, 
and composition. Novel enhanced biodegradable and biocompatible 
nanoparticle formulations are being produced with enhanced 
bioavailability, in vivo durability, intestinal absorption, solubility, 
continuous and selective site distribution combined with therapeutic 
efficacy [16-18]. 
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Abstract

Nanomedicine is an increasing science area concerned with the development and fabrication of nanometer-scale structures for improved cancer care, 
detection, and imaging. Most cancer treatment options available in the clinic currently limit their usages with limited solubility and off-target side effects. 
Nanomaterials improve the bioavailability, solubility, selective organ distribution, and therapeutic effect of several biomolecules. Gene therapy using free 
nucleic acids can deal with vital candidate genes of cancer. However, their effect is delayed due to poor cell uptake and instability in circulation. Recently, 
Short interfering RNA (siRNA), highly capable of knockdown of specific genes, has emerged as a promising molecular therapeutic tool in targeted cancer 
treatment. Using liposomes, polymers, and dendrimers nanoparticles to deliver cancer drugs and siRNAs have been successful in recent preclinical studies. 
However, improving the tumor specificity of therapeutic cargo remains a major challenge. Therefore, the development of a novel tumor-targeted drug/gene 
delivery platform is urgently needed. Numerous novel drug delivery devices for siRNA distribution were being created to address the main challenges preventing 
siRNA’s therapeutic potential. In the present review, we summarise the recent advancements in the nano-based drug delivery systems for siRNA delivery. 
Additionally, the innovative nanomedicines used for cancer therapy would be addressed. This study comprises a vast variety of siRNA drug delivery systems 
established in vitro and in vivo for improved intracellular delivery and selective gene regulation and addresses their features and possibilities for functional 
siRNA medical applications.
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 Recent advancements in developing delivery vehicles to deliver 
nucleic acids have shown promising hopes for effective siRNA based 
therapeutics [19]. Nonviral based efficient gene delivery using lipid-
based nanoparticles, polymers, dendrimers, and gold nanoparticles is 
exploring more and more [7, 20]. The main benefit of using siRNA 
therapeutics in cancer treatment is its capability to directly suppress 
specific cancer-associated genes without affecting other genes present 
in healthy organs where chemotherapeutic drugs will kill both cancer 
and healthy cells [21].  In 2001, short and synthetic dsRNA, known as 
small interfering RNA (siRNA), was reported to silence specific genes 
in tumor cells, initiating a particularly effective biomedical agent 
method of RNAi [22]. Synthetic siRNA has gained a lot of interest 
because it can be conveniently engineered and customized for every 
mutation. Despite the growing concern in gene silencing facilitated 
by siRNA as a therapeutic strategy, several important challenges 
remain for functional applications, particularly accelerated enzymatic 
degradation and slow cellular absorption of siRNA.[7, 23] However, 
It is essential to establish efficient siRNA delivery mechanisms that 
can securely guide siRNA into the cytoplasm of targeted cells for 
active siRNA therapy. To this end, viruses (e.g., adenovirus, retrovirus, 
and lentivirus) have been researched as possible siRNA transmission 
vectors because of their unique capacity to bind and deliver their 
specific genetic substances through cells [24-26]. While these viral 
vectors have high efficacy of transfection in delivering genes, their 
therapeutic use is relatively less due to the possible risks of mutation, 
infection, and immune response [27]. 

Numerous nonviral vectors are being explored recently to viral 
vectors, which are comparatively safer. Several synthetic vectors based 
on cationic polymers, peptides, and lipids have been recommended 
upon interaction with polyanionic nucleic acids to form compressed 
nano-sized frameworks [28]. These polyelectrolyte complexes have a 
net positive charge that can increase the probability of contact with the 
negatively charged cell membrane and promote cellular absorption via 
endocytosis [29]. The structural integrity of the frameworks depends 
on the relationship with the electrostatic between the nucleic acids 
and cationic carriers. In addition, to produce stable nanostructures 
frameworks, nucleic acids could be efficiently condensed with cationic 
carriers [30]. SiRNA has a rigid structure and relatively low physical 
charge density from plasmid DNA. Hence it is challenging to develop 
a compressed and compact siRNA complex [31, 32]. Unstable, weak 
siRNA frameworks can be readily recognized in blood plasma by 
enzyme, leading to a rapid deterioration of siRNA until it reaches the 
target site [33]. The use of abundant cationic vectors has also been 
accomplished by enhancing the siRNA structures’ structural integrity 
which  will improve the localized delivery of genes with reducing off-
target effects [34]. Successful delivery of siRNA’s into cancer cells is 
crucial for efficient biomedical siRNA-based activities.  Throughout 
this review, we address the various nanotechnology-based gene delivery 
vehicles for siRNA delivery, and we would highlight the use of siRNA 
based approach for cancer treatment and clinical trials evolved.

Role of siRNA Against Cancer Cells
Currently used small molecule drugs as chemotherapeutic 

agents have contributed to significant cancer therapy improvement 
[35]. These highly toxic conventional drugs cannot distinguish 
between cancerous and non-cancerous cells, which results in major 
chemotherapy-associated side effects [36]. Therefore, the development 
of alternative pathways to target and destroy cancer cells is highly 
required. In addition, specific intracellular pathways in cancer 
cells are deregulated, and a reasonable therapeutic approach is the 
use of two or more chemotherapeutic agents that target more than 
one deregulated pathway [37, 38]. The usage of RNA interference 
(RNAi) to downregulate several targets has, therefore, emerged as an 
extraordinarily successful therapeutic modality for cancer treatment 
[39-41]. To cause degradation of the mRNA and/or prevent protein 
synthesis, the RNAi strategy uses  RNA molecules that bind to 
messenger RNAs (mRNA) through complementary base pairing [42]. 
The RNA molecules are integrated and transformed into cellular 
RNA processing machinery to cause their inhibitory effects [43]. A 
21-22 base pair double-stranded in one RNAi-based therapy modality 
RNA (siRNAs) is inserted into the cells, where it attaches and prevents 
protein synthesis to its unique complementary mRNA sequence 
(this result is generally referred to as RNA silencing) [22, 44]. The 
siRNAs are engineered to target only one gene that, relative to normal 
cells, is typically overexpressed in cancer cells. Therefore, it is highly 
beneficial to use siRNAs that target the primary genes involved in the 
movement, invasion, and metastasis of cancer cells. One of RNAi’s 
key benefits is that RNAi relies on cellular machinery to target 
complementary transcripts, contributing to accurate and robust gene 
expression down-regulation [45].  In addition, where a particular 
target modulation is needed, the usage of the RNAi technique is 
highly selective. Compared to traditional chemotherapy, lower side 
effects are anticipated in this case. Despite significant progress in 
RNAi therapeutic techniques in cancer medicine, the in vivo systemic 
administration of RNAi has remained a significant obstacle.[46-49] 
To overcome these issues, the use of nanoparticles as RNAi carriers 
has therefore been suggested. Numerous approaches have been 
documented to deliver siRNA into the tumor cells selectively (Figure 
1). To prevent the difficulty of systemic distribution, the bulk of 
siRNA medicines in clinical trials are delivered explicitly to pathology-
bearing areas. Their objectives may be classified into nine groups, 
including eye disorders, pachyonychiacongenitis, infectious diseases, 
asthma, hypercholesterolemia, severe kidney injury, amyloidosis 
of thyroxine, and cancer [50]. However, the outstanding ability of 
siRNA’s therapeutics for cancer treatment remains uncovered entirely.

 

Figure 1: Various nanosystems are utilized for siRNA delivery for 
cancer management. (created by BioRender.com)
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To treat most cancers, systematic routes of siRNA distribution need 
to be added as described above. Biocompatibility, biodegradability, and 
non-immunogenicity should be included in the design criteria of an 
in vivo, systemic siRNA delivery system. Besides, the mechanism can 
safeguard siRNA from serum nucleases and efficiently inject it into target 
cells. Finally, siRNA should be granted an endosome escape capability 
by the distribution system to join the RNAi machinery and trigger RNAi 
pathways [51, 52].

System for Potential siRNA Delivery Towards Cancer Cells
Nanocarrier Based Approach for siRNA Delivery

Nanotechnology has been a possible approach for designing 
nanoparticles as gene delivery carriers in cancer therapy. Nanomaterials 
such as pharmaceutical vectors have unique features with significant 
biological effectiveness, lesser side effects, and distribution capacity [53, 
54]. for example, Yalcin et al. prepared Albumin-sericin nanoparticles 
(Alb-Ser NPs) as a novel siRNA delivery system for laryngeal cancer 
treatment. This formulation showed effective and promising results in 
siRNA delivery for laryngeal cancer management [55]. Another researcher 
group developed a vaginal suppository containing a chemotherapeutic 
agent (Paclitaxel) and genetic material (Bcl-2siRNA) using solid lipid 
nanoparticles as delivery vehicles for the treatment of cervical cancer 
[56].  Further, Arami et al. prepared Fe3O4-PEG-LAC-chitosan-PEI 
nanoparticles to deliver survivin siRNAs effective delivery towards breast 
cancer cells, which demonstrated effective delivery with enhanced the 
cell death of breast cancer cells [57]. In 2008, Murata et al, developed 
VEGFsiRNA encapsulated  PLGA microspheres for antitumor therapy 
in mice. This nanosystem demonstrated excellent antitumor effects in 
mice bearing S-180 tumors [58]. 

Poly (amidoamine) (PAMAM) dendrimers are highly branched 
macromolecules with abundant active amine groups on the surface, 
extensively used in gene therapy, medical imaging, and diagnostic 
application [59-62]. For example, arginine-functionalized G4 PAMAM 
dendrimer was used for effective functional siRNA delivery in vitro 
and in vivo[63]. In another study, scientists used PAMAM dendrimers 
TNF-α siRNA delivery to treat acute lung inflammation. These PAMAM 
dendrimer-siRNA complexes displayed strong siRNA condensation 
and high cellular uptake in macrophages and showed significant TNF-α 
inhibition in in vivo [64]. Recently, (cRGD) the functionalized fifth 
generation of PAMAM dendrimers was used to deliver Cdk1&2 siRNA 
to spermatogonial stem cells, which provided promising results in 
suppressing the Cdk gene.[65] Cai et al. prepared a versatile polymeric 
vector, reducible fluorinated peptide dendrimers (BFPD), for efficient 
and safe small interfering R.N.A. (siRNA) delivery and established that 
BFPD is an efficient and safe siRNA delivery system and has remarkable 
potential for RNAi-based cancer treatment [66]. Recently, Ghaffari et al. 
demonstrated co-delivery of curcumin and siRNA via PAMAM dendrimer 
system to deliver Bcl-2 siRNA, and these newly described PAMAM-Cur/
Bcl-2 siRNA polyplex presented promising results in HeLa Cells [67]. 
Similarly, another group of scientists developed dendrimer-based siRNA 
delivery for effective gene silencing & cancer management [68].

PEG conjugated siRNA Delivery Systems
Due to its steric stabilization effects, biocompatibility, and anti-

fouling properties, polyethyleneglycol (PEG) has been extensively used 
in gene transmission [69, 70]. For systemic siRNA distribution, the 
siRNA-PEG conjugate linked to disulfide bonds were formed [71]. The 
siRNA-PEG conjugate was electrostatically complexed to form stable 
polyelectrolyte complex (PEC) micelles with cationic carriers. The siRNA-
PEG conjugate demonstrated substantial inhibition of tumor expression 
of vascular endothelial growth factor (VEGF) and suppressed tumor 
growth after intratumoral and systemic injections [71]. A six-arm PEG 
derivative has recently been reported to be co-decorated with siRNA and 
a cell-penetrating peptide, Hph1, through a disulfide bond for improved 
cellular absorption and gene silencing [72]. 

GalNAc decorated PEGylated PLGA nanoconjugates (GalNAc@
PEG@siRNA-PLGA) were developed by Khan et al. for synergistic 
antitumor efficacy and enhance the potential of siRNA against 
liver cancer.[73] On the other side, polyethylene glycol-siRNA-
polycaprolactone (PEG-siRNA-PCL) micelles were developed containing 
hydrophobic drug paclitaxel-siRNA for efficient co-delivery to cancer cells 
[74].  This co-delivery of the PTX-Bcl2siRNA nanosystem showed robust 
anti-cancer activity. Similarly, A novel nanoparticular pre-chemosensitizer 
was applied to develop a self-assembled nanoparticle of amphiphilic 
poly(juglanin (Jug) dithiodipropionic acid (DA))-b-poly(ethylene glycol) 
(PEG)-siRNA Kras with DOX in the core (DOX/PJAD-PEG-siRNA), 
exhibited more robust antitumor efficiency and suggesting potential 
value in the treatment of lung cancer [75]. Similarly, numerous studies 
have been studied the use of PEG-modified nanoparticles for siRNA 
delivery [76-83].

Self-delivering siRNA Conjugates Without the Help of 
Cationic Carriers

For use as self-delivering siRNA conjugates, cationic polymers 
have also been connected to the end of siRNA. For effective siRNA 
distribution into cells and more than 10 times smaller than a standard 
polyelectrolyte complex (~200 nm), the cationic siRNA conjugates do 
not involve complexing with polymeric carriers [84, 85]. For example, 
Nothisen et al. have built by grafting the required amount of cationic 
spermine units at the end of siRNA for carrier-free siRNA transmission, 
cationic oligospermine-siRNA conjugates [86]. Besides, lipids were also 
conjugated into cationic siRNA conjugates at the end of oligospermine 
[87, 88]. Rozema et al. produced a multifunctional siRNA self-delivering 
siRNA conjugate called dynamic siRNA polyconjugate [89]. They were 
involved with hepatocyte galactose-specific receptors and were brought 
into the cells through endocytosis mediated by receptors [89]. 

Bioresponsive and endosomolytic siRNA-polyconjugates dependent 
on a PEG-modified poly-L-lysine (PLL) coupled backbone were also 
demonstrated by Meyer et al. [90]. Melittin (DMMAn-Mel) was masked 
with siRNA and dimethyl maleic anhydride for endosomal release 
[90]. Zhao et al. developed the cationic bovine serum albumin (CBSA) 
containing biomimetic nanoparticles conjugated with  siS100A4 and 
exosome membrane (CBSA/siS100A4@Exosome) to improve drug 
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delivery for cancer treatment [91]. CBSA/siS100A4@Exosome self-
assembled nanoparticles were showed promising in inhibiting breast cancer 
metastasis [91]. A novel cationic PEGylated niosome-encapsulated form of 
doxorubicin, quercetin, and siRNA was developed by Hemati et al. for the 
treatment of cancer. The co-delivery of drugs and siRNA using cationic 
PEGylated niosomes exhibited an increased anti-cancer activity [92].

 Liu et al. designed albumin nanoclusters as a dynamic-covalent 
targeting co-delivery and stimuli-responsive controlled release platform 
[93] They suggested that the nanocluster for the co-delivery of DOX and 
VEGF-siRNA exhibits a highly efficient capacity for gene silencing and 
apoptosis-inducing ability and markedly suppresses the migration and 
invasion of cancer cells [93]. A low-density lipoprotein receptor-related 
protein and a RNA aptamer bound CD133 were utilized to develop 
as dual-targeting ligands for targeted imaging and therapy of cancer 
stem cells in brain glioma [94]. This dual-modified cationic liposomes 
loaded with survivin siRNA and paclitaxel (DP-CLPs-PTX-siRNA) 
for actively targeting imaging and treating CD133+ glioma stem cells 
[94]. The siRNApolyconjugates displayed excellent structural stability 
against anionic heparins but were quickly disassembled under reduction 
conditions into monomeric siRNA, allowing silencing of the siRNA-
mediated gene [5, 88, 95, 96].

Hydrophobic Polymers Conjugated siRNA Delivery 
Systems

A siRNA-polymer conjugation method has also used biodegradable 
solid polymers. Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable 
and biocompatible polymer that has been used to different conjugate 
molecules such as small molecular medicines, proteins, antisense 
oligonucleotides, and siRNA [97-102]. Utilizing siRNA-PLGA conjugates 
linked to disulfide bonds, an amphipathic structure of an A-B style 
block copolymer was manufactured.[103-106] Byeon et al. developed a 
hyaluronic acid-labeled poly(d,l-lactide-co-glycolide) nanoparticle (HA-
PLGA-NP) encapsulating both PTX and focal adhesion kinase (FAK) 
siRNA as a selective delivery system against chemoresistant ovarian 
cancer [107]. 

Similarly, Senel et al. formulated siRNA-decorated and chitosan-
modified PLGA nanoparticles and suggested that the system is a potential 
carrier system for both treatments of cancer and prevention of pain, 
especially for metastatic cancers [108]. SiRNA-PLGA hybrid micelles 
were developed by Hazekawa et al. to deliver the siRNA into the ovarian 
cancer cells [109]. These siRNA-PLGA hybrid micelles showed an effective 
siRNA delivery tool in a murine ovarian cancer model, mainly in case it 
targets molecules, such as glypican-3 (Gpc3) [109].  Kwak and his research 
group also developed PLGA nanoparticles for the codelivery of siRNAs 
against programmed cell death protein-1 (PD-1) and programmed cell 
death protein ligand-1 (PD-L1) suppression of colon tumor growth [110].

Targeted Delivery
In the production of effective siRNA distribution in nonviral vector 

systems, such as cationic lipids and polymers, important advances have 
been made. A big concern, however, with these methods, a significant 
volume of siRNA for successful gene silencing needs to be administered. 

In addition, cell-type-specific targeting should avoid off-target impact, 
so the adverse effects of therapeutics are minimized. Conjugation to 
ligands such as antibodies, aptamers, etc., is a popular technique for 
the selective transmission of siRNA to particular cells or tissues and 
peptides that bind on target cells directly to the associated moieties. 
For systemic and selective siRNA transmission, Song and colleagues 
produced a protamine-antibody fusion protein. T cell-specific siRNA 
distribution was shown by Kumar et al. in a preclinical animal model 
[111]. In this analysis, for T cell-specific siRNA distribution in humanized 
mice, a CD7-specific single-chain antibody was conjugated to the oligo-9-
arginine peptide (scFvCD7-9R) [111]. For targeted distribution of siRNA, 
aptamer-siRNA chimeric RNAs have been developed for cancer therapy 
[112-114]. Extensive experiments have recently been conducted to build a 
siRNA vector based on an RNA nanoparticle [115]. Covalent conjugated 
to cell-penetrating peptides (CPPs) or protein transduction domains are 
another method for improved siRNA distribution [116, 117]. CPP-siRNA 
conjugates can exhibit cytotoxicity due to the cell membrane’s disruption 
or immunogenicity [118-123].

Clinical Trial Involved in siRNA Based Approaches
siRNA-containing nanoparticles have reached the Phase I clinical trial 

for cancer therapy[101]. Calando Pharmaceuticals has produced the first 
siRNA phase I CALAA-01 study against solid tumors [124]. Several other 
firms, including Alnylam, Tekmira, Silence Therapeutics, Marina, and 
others, have launched siRNA nanoparticle products in the preclinical and 
clinical phases following the production of CALLA-01[28]. For example, 
Alnylam Pharmaceuticals has an ALN-VSP02siRNA-carrying liposomal 
formulation developed to treat liver cancer[125]. Two siRNA targets 
against vascular endothelial growth factor (VEGF) and kinesin spindle 
protein (KSP) are found in ALN-VSP02 (NCT01158079) [46, 126]. This 
siRNA-liposomal formulation already completed the step I stage. Step I 
of its liposomal siRNA formulation, Atu027, used to treat advanced solid 
tumors, including gastrointestinal and lung cancers, has been completed by 
Silence Therapeutics AG (NCT00938574) [127]. A siRNA against protein 
kinase 3 (PKN3), a kinase involved in metastatic motility [127], is the active 
ingredient of Atu027. Tekmira Pharmaceutical Company has a phase I dose-
escalation study of TKM 080301, a siRNA lipid nanoparticle formulation 
against polo-like kinase 1 for solid tumor patients (NCT01262235) [128, 
129]. In order to assess the progression-free survival (PFS) of patients 
infected with siG12D LODER (Local Medication EluteR) (NCT01676259), 
Silenseed Ltd has started a Phase II study. SIG12D LODER is a siRNA 
polymer-based matrix against the mutant KRAS oncogene that is mutated 
and overexpressed in over 90% of human ductal adenocarcinomas in the 
pancreas [130]. Eventually, the M.D. For women with advanced, recurring 
ovarian cancer, the Anderson Cancer Center is sponsoring a phase I clinical 
trial to assess the efficacy and highest tolerable dosage of siRNA-EPHA2-
DOPC (NCT01591356). In summary, numerous siRNA nanotherapeutics 
are undergoing clinical trials, and hopefully, patients will be benefited the 
near future [48, 131-135].

Conclusions And Future Prospects
SiRNA has tremendous advantages as one of the most effective 

medications for cancer therapy, such as excellent protection, higher 
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effectiveness, unregulated target range, and specificity. To overcome 
the distribution problems of siRNA, several delivery systems have 
been developed. These extremely efficient distribution mechanisms 
are very distinct in configuration, scale, and chemistry, although any 
recommendations about optimum distribution systems’ characteristics 
are still valid. The particle size of nanoparticulate delivery systems should 
be around 20-200 nm, i.e., big enough to prevent renal filtration but 
minimal enough to evade phagocytic clearance. As a shielding agent, 
PEG has proved to be useful in preventing non-specific interactions and 
in preventing circulating immune recognition. To reduce non-specific 
effects and escape nuclease, chemical modifications such as 2-O-methyl 
substitutions are needed with digestion.

Furthermore, endogenous or exogenous targeting ligands are often 
frequently helpful to cancer cells for siRNA uptake. Although many 
studies have shown the great promise of siRNA in cancer therapy, 
difficulties remain in taking siRNA’s full potential to the clinic, and 
most siRNA drug delivery systems are still in preclinical trials. In recent 
years, peaks and falls have been encountered in siRNA drug growth. The 
outlook towards RNAi drugs of major pharmaceutical firms has often 
been over-optimistic. In total, the secret to siRNA drug production is a 
successful distribution mechanism. Once a major advancement is made 
in research into siRNA drug delivery systems, siRNA will occupy a strong 
place in the market for drugs, especially the market for anticancer drugs.

RNAi operation selectively silences any genome genes; RNAi 
detection has been called one of the most promising and important 
medical breakthroughs. In specific, the gene’s siRNA-mediated 
silencing has significant promise in treating tumors and mammalian 
cell gene-related diseases. Nonetheless, a safe and effective distribution 
method for therapeutic purposes, siRNA remains a barrier in the 
cytoplasm of targeted cells. The topic of transmission is a core problem 
in siRNA therapy. The accelerated deterioration and renal clearing in 
the bloodstream of siRNA render it impossible to keep intact before a 
goal site is achieved. The latest RNAi therapeutics in clinical trials have 
concentrated on the direct administration of siRNA to target tissues such 
as the skin, lungs, and brain due to siRNA’s poor medicinal properties. 
This local distribution showed the active gene silencing in animal 
models. However, the development of new siRNA delivery systems for 
in vivo targeting of particular cells and tissues is highly sought after. An 
extensive range of siRNA delivery mechanisms have been proposed to 
overcome this problem, and some of them have shown encouraging 
preclinical outcomes. Effective conjugation with different biomolecules, 
such as functional polymers, targeted ligands, and imaging probes, was 
given by end-modified siRNA. In gene silencing and immune responses, 
the conjugation sites and forms of siRNA play significant roles. In the 
bloodstream, liposomal encapsulation technology has increased the half-
life of siRNA.

Furthermore, multifunctional and biocompatible siRNA 
encapsulating liposomes have been extensively researched over the last 
few years for therapeutic applications. Multifunctional nanoparticles 
for siRNA distribution and imaging in vivo and in vitro have enabled 

important developments in the surface alteration, functionalization, 
and conjugation of metallic core nanoparticles. Because of the improved 
spatial charge density and structural stability, siRNA-based nanostructures 
have recently presented a new opportunity for producing stable complexes 
with low-molecular-weight cationic carriers. This approach demonstrates 
a synergetic effect, demonstrating high siRNA per nanoparticle loading 
efficiency, low cytotoxicity, and sustained operation of RNAi. Although a 
range of siRNA carriers have been proposed, it is important to enhance 
the stability and quality of siRNA distribution systems for realistic 
software. In summary, our review articles provided recent advances 
in nanoformulations for effective delivery of siRNA selectively to 
tumors. This article may help scientists develop efficient siRNA-based 
nanotherapeutics and, ultimately, treat patients in clinics better.
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