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Introduction
Machine Learning and Brain Imaging

Machine learning approaches provide infinite links which 
collate patterns of brain activation to behaviour of an individual. 
It is as discrete as it can provide information at the level of an 
individual-subject. This development has been adorned with the 
present knowledge of machine learning and algorithms of pattern 
recognition. Machine learning is an advanced form of regular 
algorithm. Machine learning involves neural networks which 
speak about how the complex functions of the human brain are 
performed [10]. Machine learning algorithm can be divided into 
two phases a training phase followed by a testing phase. First is 
the training phase which involves organisation of the randomly 
stored data in a proper tabular format including all the important 
attributes. All this data loaded into the algorithm and made to 
be accustomed with them. Then follows the testing phase where 
the training data is evaluated and then submitted for further 

evaluation and classification of data. A classifier is a function 
which helps categorise several objects into three specific classes 
[11]. The basic principle of classification in the machine learning 
task is to provide a rule which will pertain to an observation x 
assigned to one of the several objects. Here x denotes a vector of 
N-dimensional neuroimaging data.  When considering a simple 
case there are only two available classes. Classifier can therefore 
be assigned a decision function  f : RN{-1,+1} where x is assigned 
to one of the classes denoted by -1 and +1 respectively [12, 13]. 
Linear decision function f matches to a separating hyperplane in 
which vector w and bias term b are the parameters. Then the label 
y will be : y =f(x; w, b)= sgn (wT x + b). Based on a set of such 
input-output relations (x
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) ε RN {-1,+1}. Learning can be 

formally described as the task of selecting of both the parameter 
values ( w, b) and the decision function fεƒ. This will result in 
classification of x by f.  In order to establish the optimal decision 
function a proper loss function needs to be established. 0/1-
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Abstract

The brain is a multilayered and multicompartment system structured for accomplishing robust behaviours which leads to cognitive and physiological 
functioning of the human system [1]. The total volume of the human brain is 1450cm3 on an average. It comprises of innumerable neurons and glial cells 
which make up the building blocks of the brain [2]. Scientists have been trying to understand the brain and unfold it’s mysteries for many decades. Inspite of 
taking avid interest in this field the information gathered does not provide a complete comprehensive perception of the brain [3, 4]. The effort to comprehend 
the brain has evolved over the years [5]. Machine learning techniques are being widely used to make relevant outcomes for neuro imaging. The advent of 
imaging technologies has helped to facilitate our understanding of the brain and its complexities [6-8]. Brain imaging technologies provide an unprecedented 
tool to analyse the changes in the central nervous system (CNS). These technologies have bought with them higher resolution and deeper penetration into the 
brain thus exposing newer functionalities of it.  Exploring the brain to absorb its secrets and unravel its enigma is one of the most promising and rewarding 
applications of biomedical brain imaging technologies. Brain imaging technologies provide non invasive techniques of viewing the brain and its activities 
[9]. Doctors and researchers can monitor the brain without having to intrude into it via painful and risk staking neurosurgeries. This is one of the biggest 
advantages of the emerging and ever evolving brain imaging technologies. Today, a number of these techniques are being put to practical application to 
save innumerable patients around the globe. The current brain imaging technologies include Functional magnetic resonance imaging (fMRI), Computed 
tomography (CT), Positron Emission Tomography (PET), Electroencephalography (EEG), Magnetoencephalography (MEG), Near infrared spectroscopy, 
Two Photon Microscopy and Photoacoustic tomography (PAT). Of these fMRI and PAT are the recent imaging tools of particular interest.
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loss function is one of the most commonly used loss functions. 
Generalization error is a way of determining decision function by 
minimising the expected risk factors [14]. 
R [f]= 

ᶴ 
 l(y,f(x)) dP(x,y), where P(x,y) is the unknown distribution. 

Another straight forward approach would be to evaluate the risk 
in an empirical fashion. 

R
emp

[ f ] = 1/n  thus minimize the risk involved 
around f. Further, computing parameters for linear decision 
functions, Linear Discriminant Analysis (LDA) and Linear 
Programming Machines (LPM) can be used. LDA is given as w  

1

( 1 2)µ µ
-

= -∑ [15]. A more generalised framework of LDA can 

be the Fisher’s discreminant analysis

Fisher’s Discriminant Analysis (FDA) 
 j (w) = WTS

B
W / WTS

W
W where, S

W
 is the class scatter, 

1 is the class mean, n
i
 is the total pattern available x

i
 in a class C

i. 

In any condition the class distributions cannot be established as 
discrete values. So the optimality statement of LDA is rather a 
dependent on the class distribution analysis. So the covariance 
and mean values need to be estimated from the training data 
itself. The empirical covariance is used to estimate the covariance 
matrix as the empirical covariance is unbiased.  Neuroimaging 
data usually contain only a few data points in a high-dimensional 
data set, thus making empirical estimation imprecise [16]. This is 
mainly attributed to the reason that the unknown parameters to 
be estimated are quadratic in nature as compared to the number 
of dimensions available. This discrepancy results in an error 
referred as the systematic error. Therefore shrinkage is a reliable 
correction of the systematic error. Recently a group of scientists 
established an analytical method for the calculation of shrinkage 
which was applied to brain imaging data. According to this, the 
empirical covariance matrix is denoted by an optimal value which 
depends only on the variance of entries available from different 
samples.  Then the optical parameter γ towards the identity can be 
calculated as: 
γ* = n/( n-1)2* var

k 
( z

i j 
(k)) /  s2

ij 
+ ∑ᶴi(sii-v)2  . 

LPMs deal with the parameter values w by following sparse 
solutions, whereby the value of  w becomes zero.  This is achieved 
by putting to use the optimisation of 1-norm from the objective 
function instead of 2-norm. Optimisation of 2-norm usually 
generates non-sparse solutions. 

Application of Machine learning to Brain 
Imaging

Both fMRI and EEG/MEG are mostly linear. However, 
non linear methods can also be easily analysed by adding 
model classes in the model selection loop. EEG studies involves 
utilisation of LDA, shrinkage LDA, Fisher sparse and other linear 

programs. In these cases, the class conditional distributions are 
converted to Gaussian by proper pre-processing. In all these cases, 
LDA has been declared as the optimal classifier. fMRI analysis 
has evolved with the help of machine learning from univariate 
analysis tool to multivariate analysis.  Use of LPMs is supported 
by the idea that they possess benign abilities whereby the number 
of input dimensions in x is high while the count of samples is 
low. This unbalanced situation becomes problematic in fMRI 
whereby voxels is present in ten thousands while the number of 
samples very rarely exceeds some hundreds. Statistical machine 
learning methods are being applied to neuroimaging data 
analysis. The most important characteristic feature is the ability 
to model data sets having multi dimensionality.  Relating brain 
images to behavioural or clinical observations can be done by 
using supervised learning in decoding or encoding settings. The 
advantage of unsupervised learning is the fact that they unravel 
the hidden parts of images or locate specific populations in large 
groups.

NumPy: It is an array based numerical computation for 
n-dimensional data representation. It takes input and output as 
array persistence and resultant is a dot product. Mostly used by 
major scientific Python libraries [17].

SciPy: It encompasses a variety of domains including algebra, 
processing signals and optimization. It operates on ndarrays by 
opting for higher level mathematical functions. SciPy ensures 
efficient data management and high performance by linking to 
compiled libraries like BLAS, Arpack, MKL. Both NumPy and 
SciPy provide a perfect numerical computing process  which are 
the elementary bits used in general algorithms [18]. 

Matplotlib: It mainly focuses on figure processing and offers a 
multitude of formats to choose from for the purpose of publication 
[19]. 

Nibabel: It is used to assess the data in neuroimaging file format.  
Scikit-learn is a very modern machine learning application in 
neuroimaging.  It contains a huge repertoire of both supervised 
and unsupervised algorithms based on statistical learning. The 
application of Scikit-learn provides a very strong stool to image the 
brain. Scikit-learn is a machine learning library which is written 
in Python. The Scikit-learn tool is highly efficient in producing 
state-of-the-art algorithms which are accessible by all and also 
reusable. It also offers easy prototyping adopted from Python. The 
application of Scikit-learn is unusually broad and the applications 
to neuroimaging are too wide. In Scikit-learn data input is in 
the form of two dimensional arrays comprising of size samples 
and features.  The methods adopted are discrete and depend on 
their roles: the role of estimators is to fit models from data, the 
role of predictors is to make predictions on newly archived data 
and the role of transformers is to convert data from one mode of 
representation to the other mode. Tuning of hyperparameters can 
be done using GridSearchCV estimator. 
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Processing of neuroimaging data requires extensive processing. The 
process to remove artifacts from neuroimage to ensure enhanced 
efficiency of the algorithm is called Signal Cleaning. It includes 
removal of singular trends from a series of voxels reffered to as 
detrending. Next includes the harmonization of the time series to 1, 
a process called normalization. Removal of varying frequency signals 
is done by a method called frequency filtering. One major advantage 
of machine learning is the conversion of brain scan images into two 
dimensional data. The final steps involve data visualisation and 
tracing of objects within the image using Support Vector Machines.  
The term machine learning involves an umbrella term which 
comprises of a set of topics dealing with the generation and 
evaluation of algorithms which help in recognition of patterns, 
categorisation, and prediction, all these features are based on models 
which are derived from pre- existing data. Since its conception, in 
all the years machine learning has helped to understand biology in 
leaps and continues to do so. It is hoped in the coming years it will 
contribute to enhance the understanding of biological complexities 
in brain. The ability to create a connection between cognitive biology 
and its neural circuits are the ultimate aim of cognitive neurosciences. 
The information provided by the EEG or the fMRI are mostly 
incomplete or merged with a lot of unwanted data [20].  Mapping 
neural circuits is tremendously beneficial in the field of neurobiology. 
Application of it to humans shall open up a galore of possibilities in 
cognitive neurobiology and disease diagnosis [21].  Machine learning 
plays a pivotal role in this accomplishment as by employing encoding 
and decoding of signals they can assume fine algorithmic results [22]. 
However, the disadvantage is that it cannot sufficiently unravel the 
detailed mechanistic brain functions. Keeping this in mind statistical 
machine learning owns its due importance in data analysis. Further 
the hindrances which occur while the processing of machine learning 
of neuroimages is actually in the methods employed. The high 
variance nature of the methods adopted and the multi dimensional 
nature of the statistical models give rise to more variability in the 
outcome. Nevertheless, machine learning has definitely established 
increasingly expressive and robust neuroimaging technology.

Machine Learning and Different Brain Imaging 
Technologies
Electroencephalography (EEG) 

EEG measures the electrical activity of the brain by 
means of electrodes placed on the scalp. The electrical activity 
detected by EEG is on a millisecond level. Electrical signals from 
every neuron are collected and the resulting traces are known as 
an electroencephalogram (EEG) [23]. Therefore, it provides high 
temporal resolution in brain image computing.

Magnetoencephalography (MEG) 
MEG is an imaging technique which measures the magnetic 

fields produced by electrical activity in the brain. MEG provides mill 
second time resolution and also allows for real time tracking of brain 
activity [24]. They work together with innumerable superconducting 
quantum interference devices, SQUIDS, which receive signals 

generated by the coherent action of cortical neurons. MEG measures 
involve recording of the evoked responses, regulating cortical rhythms, 
properties of neuronal activity and their connectivity.

Positron Emission Tomography (PET)
 PET maps functional processes in the brain by use of 
trace amounts of short-lived radioactive materials. Brain activity is 
associated with high radioactivity [25]. When there occurs radioactive 
decay due to brain functional activity, a positron is emitted by the 
decay, this is then detected by the detector. 

Computed Tomography (CT) 
 CT scan helps constructing the brain image based on the 
differential absorption of X-rays by the tissue the X-ray beam passes 
through. Bone and hard tissue absorb maximum X-ray followed by 
soft tissue [26]. Least amount of X-ray absorption is displayed by 
air and water. Hence the image produced by a CT scan depicts the 
gross structure of the brain but does not provide a high resolution 
detailed image of it. 

Functional Magnetic Resonance Imaging (fMRI)
 fMRI is a technique which maps brain activity at the 
macroscopic level. It works by monitoring the difference in levels of 
blood oxygenation and flow of blood which occurs due to neuronal 
activity. An active brain area denotes more activity in that particular 
region which requires an enriched supply of oxygen [27]. The oxygen 
supply is replenished by the increased blood flow to the active 
area. fMRI scans are used to produce brain activation maps which 
provide information on the parts of the brain involved in particular 
mental processes. These include complex cognitive functions, such 
as language and vocabulary, emotion, decision-making, memory and 
cognition. However fMRI cannot achieve spatial resolution at the 
level of a single neuron. 

Multiphoton Microscopy (MPM)
 Two-photon (2P) microscopy and multiphoton microscopy 
allows detailed and direct examination of neuroactivities at the 
microscopic level [28].  The measurements include parameters 
like action potential firing, the release of signaling molecules, and 
extra-cellular pumping of ions [29]. However 2P microscopy cannot 
penetrate through an intact skull to provide an image. It involves 
the simultaneous interaction of more than two low energy photons. 
These photons interact with a fluorescent molecule which further 
involves an electronic transition which is equivalent to the absorption 
of a single photon bearing energy almost two times as that of a 
single photon. The resultant emission from the excited fluorophore 
comprises of a single photon. With MPM minimally invasive 
microscopy can be performed. The MPM provides a spatial resolution 
of 1µm which is higher than that of MRI or PET by two magnitudes. 
MPM allows differential imaging of the cellular and the subcellular 
regions without the disadvantage of slow image acquisition.  

Photoacoustic Tomography (PAT) 
 PAT is a state-of-the-art imaging modality which bridges 
the gap between the macroscopic brain activity rhythms observed in 
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humans and the microscopic activity details observed in small animal 
models. PAT is based on the photoacoustic (PA) effects. The process 
is initiated by the optical absorption by molecules in the tissue and 
final ultrasonic emission which is through thermoelastic expansion. 
The utilisation of both the optical excitation and ultrasonic 
detection provides PAT with two advantages over the other imaging 
technologies, (i) The PA signals thus produced is highly sensitive to 
the contrast produced by the brain tissue’s rich optical absorption. 
These results in imaging functional and metabolic aspects of the 
brain (ii) acoustic waves are more resistant to the phenomenon of 
scattering as compared to light. This provides PAT with the advantage 
of high spatial resolution images of the deeper tissues. 

EEG and MEG
 Electroencephalography or a window to the brain, was 
discovered a century ago. It is a brain mapping and imaging 
technique which measures electrical activities of the brain by the 
electrodes placed on the scalp [30]. It provides information about 
spatio-temporal functioning of the brain [31]. Over the years EEG has 
evolved as the analysis of temporal waveforms at particular channels, 
aggregates of post synaptic currents, amplitudes and latency of peaks 
and troughs or grapho elements in disease stages to a comprehensive 
analysis of the brain’s electric field [32]. The number of electrodes 
placed on the scalp may vary between 64-256 [33, 34]. The more 
the electrical signals corresponds to more neural communication 
which in turn means increased brain activity [35]. The brain activities 
measured by EEG are of two types: spontaneous and event-related 
activities. Spontaneous activities refer to brain responses that occur 
without any stimulus [36].

 
Figure 1: Schematic representation of EEG

Figure 2: Representation of brain waves generated using EEG 
(Adapted from www.medindia.net )

 These neuronal responses generally do not have any physical 

or behavioural manifestations. Event related activities or potentials 
on the other hand are low amplitude potentials influenced by specific 
stimulus or thoughts [37]. It is used in the diagnosis of seizures, 
drowsiness or other states of psychological problems that cause overt 
work or less activity in specific regions of the brain. Spatial analyses 
data generated by the EEG are mostly unambiguous and definite. 
MEG on the other hand measures brain activity by detecting magnetic 
fields produced in the brain. The disadvantage of EEG signals is the 
fact that they record impulses at the surface of the brain hence it 
becomes difficult to decipher whether the signal generated was from 
an area near the brain surface or from deeper parts of the brain [38].

 The qualities which make EEG data reliable are: high 
temporal resolution, cost effective and easy to handle technique. Even 
performing high density EEG recordings is easy and fast. It gives a 
detailed analysis of the spatio-temporal dynamics of large-scale brain 
networks in practical life conditions [39]. Further it does not require 
to expose the patient to any harmful radiation. All these benefits 
taken together make EEG a powerful brain imaging and mapping 
device available even for the poor. EEG combined with fMRI and 
other imaging techniques surely offers the best brain images [40].

Figure 3: Representation of brain waves generated using MEG

Positron Emission Tomography (PET)
 PET scan a gamma imaging technique, when applied 
to the brain mainly has two functions, first to measure the brain 
metabolism and secondly to detect the presence of radio labelled 
chemical agents in the brain [40]. Exogenous radioactive chemicals 
are also metabolically active, emissions radiated from these chemicals 
are picked up by PET [25]. The positrons annihilate when they collide 
with electrons present in the tissue. The resulting released pair of 
photons triggers signals [42]. 

Figure 4: Schematic representation of PET image analysis
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 The data generated from PET are then processed in the 
computer to produce multi dimensional images depicting the spatial 
distribution of the chemical throughout the brain [43]. This data helps 
construct maps of biological processes which help clinicians in their 
interpretation of patient’s health. Cyclotrons are used to produce 
positrons emitting radioisotopes which label the chemicals used to 
image the brain. The injected chemical referred to as radiotracer is 
injected in the blood stream of the patient which finds its way up to 
the brain. PET images can depict oxygen and glucose metabolism in 
living brain tissues. Brain activity in various regions of the brain can 
be easily deduced from these PET images. 

Figure 5: Brain imaging using PET scan. Showing gray matter 
differences in Methamphetamine addicted patients compared with 
control (CTL) Reprinted with permission from [43].

 PET scan offered the advantage of superior quality images 
and high resolution even before fMRI became more widespread [44, 
45]. PET scan images have helped in performing radiosurgery and 
stereotactic surgeries. PET scan is also used for preliminary diagnosis 
of brain disorders like AD, PD and multiple sclerosis [46-48]. It is 
mainly involved with identification and treatment of the pathogenesis 
of the diseases rather than the diagnosis.  It can give information 
about brain tumours, strokes and neuro damage as in traumatic brain 
injury disorders [49]. The disadvantage with PET images is the fact 
that the radioactivity of the radio chemicals used decays very fast 
and so the process of imaging can also not be prolonged for longer 
observations. In recent times PET is used in conjunction with CT 
scan and MRI to provide detailed and definitive information about 
the brain [50]. 

Computerised Tomography (CT)
The term computed tomography was derived from three 

words, computer, tomo (meaning to cut) and graph (meaning 
pictures) [51]. A computerised tomography scan uses ionising 
radiations or X-rays coupled with an array of electronic detectors to 
elaborate the structure of the brain by analysing a pattern of densities 

from the sliced or cut sections of the brain tissue [52]. It involves 
further detailing like blood perfusion. The X-ray beam rotates around 
the object situated in the scanner. Rotation is the choice of action as 
it allows multiple projection beams to pass through the object. The 
X-ray beam passes through the subject and a beam corresponding to 
each unit measurement is called a ray.  A view is a set of measurements 
accomplished during the translation of the beam through the subject 
[53]. 

Figure 6: Schematic representation of brain CT scan
 The first generation CT referred to as Hounsfield’s Mark 
I scanner could measure a total of transmission of 160 rays per view 
[55]. Over years of improvement today the scanner has attained a 
speed of 750. This completes one view. After completion of the first 
view the tube detector is rotated around the subject by 1o to capture 
the second view. The Mark I scanner would complete the process 
by taking 180 views over 180o. The scanner today collects over 1000 
views over 360o for a complete view. Data collection is obtained by 
a single narrow beam with a sodium Iodide scintillation detector. 
This complete arrangement is referred to as first generation CT. The 
objective of the CT scan image construction is to determine complete 
and detailed analysis of attenuation that occurs in each matrix. The 
calculated attenuation values are then represented as gray scores on 
a two dimensional level. Reconstruction of image by the CT scanner 
can be accomplished by following the equation : X

i
 = u

1
+u

2
+u

3
+.....+u

n 

where X
i 
= -ln (N

i
/N

o
), N

i
 is the transmitted x-ray intensity measured 

by the detector. N
o
 is the x-ray intensity entering the subject (patient) 

for the particular ray and u
1
 =w

1
µ

1
 is the attenuation in each view. 

Similarly, sum of all attenuation values measured at all possible angles 
is obtained [55].  

Figure 7: Representative CT brain images to study the effect of 
stroke. Red denotes areas of stroke while blue denotes brain blood 
flow affected due to stroke (Reprinted from Cedars Sinai website).
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The four unknown’s ui to u4 can be obtained by solving 

all the equations simultaneously. However the advanced version 

includes a computationally efficient approach. This algorithm is 

referred to as algebraic reconstruction technique (ART). It is achieved 

by taking measurements from each view and comparing attenuation 

values with respect to the values obtained from the first view. 

Adjustments are made accordingly and finally these adjustments are 

divided equally along the rays.  The process continues to generate 

several estimates adjusted on the basis of the last estimate. Since the 

attenuation values predicted by the last obtained estimate matches 

with most of the previous measurements the final image thus 

constructed is reffered to as the true image. One limitation faced by 

the ART images was that it lacked image quality as the transmitted 

x-ray intensities were low.  This would lead to noise referred to as 

quantum mottle, which is rather unavoidable during detector 

measurements. However, since ART does not achieve 100% exactness 

with measurement values as these values contain a degree of error. 

Backprojection is one innovation which helps a better reconstruction 

of image. Back projection is the division of the sum of the attenuated 

measurements along the path followed by the ray. Back projection 

is much efficient and resolves the problem faced by ART in image 

construction. Difference in attenuation of the X-rays among the 

surrounding tissues generates a contrasting  image X-ray image. The 

attenuation of X-rays is proportional to the brighter appearance of 

the image [56]. The higher the attenuation of the X-rays the brighter 

the image appears. Air causes least attenuation of X-rays and hence 

appears black whereas, bone and calcified structures appear white 

on an X-ray plate [57]. The images produced are not of very high 

resolution but provide considerably reliable data and analysis of the 

brain condition [58]. Images produced are two dimensional. A CT 

scan reveals those parts of the brain which are underdeveloped, sites 

of brain injury, or regions impacted due to stroke, trauma, infections 

or lesions [59, 60].   

FMRI
 Functional magnetic resonance imaging (fMRI) maps brain 
activity by measuring the small changes in blood flow that are caused 
due to brain activity [61]. It can show specifically which part of the brain 
is functioning in response to the task performed by the patient. Not 
that the MR signals are directly sensitive to the brain activity, in fact, 
changes in neural activity cause changes in blood flow which is in turn 
reflected in changes in the MR signals [62]. Data from fMRI can be used 
to examine brain’s functional activity, evaluate damage to the brain due 
to stroke or injury, to aid in diagnostic and treatment strategy. fMRI is 
able to detect anomalies in the brain activity which cannot be detected 
by any other imaging technique [63]. The main principle behind MRI is 
the fact that all atoms and molecules contain protons [64, 65]. 

Figure 8: Schematic representation of fMRI

These account for magnetic resonance emitting wave signals 
which can be detected. NIRS is an optical technique which measures 
the level of blood oxygenation in the brain. A beam from the infra red 
part of the spectrum is focussed through the skull. The emerging light 
shows some degree of attenuation which is dependent on the level 
of blood oxygenation which in turn is directly proportional to the 
amount of brain activity [66]. The more the brain activity the more 
will be the oxygenation of blood. NIRS therefore provides an indirect 
measure of brain activity. Blood which carries oxygen, oxyhaemoglobin 
is present around the brain. Brain activity uses up this oxygen from 
blood causing it to covert to de-oxyhaemoglobin. Oxyhaemoglobin 
and de-oxyhaemoglobin have different magnetic properties due to 
the presence and absence of haemoglobin. Oxygenated blood has a 
slightly stronger signal as compared to the de-oxygenated blood. fMRI 
detects these sites of usage of oxygen in the brain and that is referred 
to as site of brain activity. 

Figure 9: Representative fMRI images. Reprinted with permission 
from: (Lv et al. 2018)

Of advantage is the fact that different molecules possess 
different magnetic resonance and can be tracked to measure brain 
activity. Interestingly, neural activity causes higher blood flow than 
the changes that occur due to oxygen metabolism. This causes more 
blood flow and oxygenation when brain activity increases. This 
phenomenon is referred to as blood oxygenation level dependent 
(BOLD) effect [68]. 
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Figure 10: Figure depicting comparison of brain images with X-Ray, CT, 
MRA Magnetic Resonance angiography, MRI and MRI. (Reprinted with 
permission from: San Diego brain injury foundation)

These serve as the basis for fMRI. The complete image is 
generated by a cumulative monitoring of wave frequencies differences 
between active and inactive states in the brain.  The image generated 
is of high resolution and good contrast between tissues.  The fMRI 
detections are therefore a qualitative method as it depends on the 
complex changes that occur due to blood flow and metabolism of 
oxygen [69]. Despite the imposing applications in functional brain 
imaging fMRI has its own disadvantages. (i) Functional brain imaging 
studies can establish the regions involved in performing a particular 
task, however it does not have the capability to establish whether that 
particular region is necessary for that task (ii) laboratory settings for 
the performance of a task does not match with the real life practical 
conditions which exist under whose influence the task is actually 
performed. This creates a discrepancy in the functional analysis of 
the brain imaging taking place thereof (iii) human decision making 
behaviour is much influenced by several parameters, it is difficult to 
establish whether functional imaging technique is enough to assess 
this fundamental challenge. In this respect forward and reverse 
inferences should be avoided (iv) Lastly performing an fMRI on a 
patient is risky if the patient is claustrophobic. Even patients with 
implanted medical devices are at a risk of device failure under fMRI 
exposure.  To overcome these issues is the next big challenge in the 
field of fMRI brain imaging.  Achieving better temporal and spatial 
resolutions and the use of better contrasting mechanisms could be 
of advantage in the improvement of this technique. The software 
parameters should be best arranged to get reliable statistical data.

Arterial spin labelling (ASL) is a method used to directly detect 
changes in the blood flow [70]. ASL detects magnetic resonance signals arising 
from the arterial blood before it is distributed to different regions of the brain. 
By comparing MR signals from two different regions of the brain which have 
utilised the oxygenated blood differentially, the static signals arising from 
the hydrogen nuclei is subtracted and this results in signal differences from 
the delivered arterial blood to remain which are then depicted as an image. 
A combination of ASL and BOLD imaging techniques is being developed. 
This technology will provide a better quantitative analysis of brain function 
and oxygen metabolism changes [71]. This synergistic technology may act as 

the next generation of fMRI methods and hold immense potential in brain 
imaging technology [72].

MPM 

 Multiphoton Microscopy (MPM) is considered to be the 
best method for imaging live cells and intact tissues which can be 
imaged from the molecular level upto the whole organismic level [73, 
74]. MPM is further suited to perform brain imaging with minimal 
invasion. Imaging can also be done over a prolonged period of time 
[75]. This makes it possible to image dynamic biological processes 
over a period of days or weeks [76]. As such inherently complex 
biological processes can be explained well by the vast imaging data 
made available by MPM [76]. MPM provides an additional advantage 
of imaging live tissues by improving the depth of penetration and so 
helps in reducing further photodamage. MPM can achieve imaging 
depths ranging from 500µm to 1mm without any compromise in 
image quality [77]. Deeper structures in the brain situated at distances 
relatively far away from the lens can be imaged by regulating the 
Gradient index (GRIN) which is able to resolve the optical sections 
located deeper in the brain [78, 79]. This is achieved by the use of 
near infrared (NIR) lasers of time length of the order femto seconds 
to generate non linear signals in the visible range [80]. NIR excitation 
increases the capability of imaging at deeper depths into a sample 
by using a light scattering system which is proportional to the 
fourth power of the excitation wavelength. Multiphoton excitation 
(MPE) is based on the principle that the transition energy of two or 
more photons used is enough to cause the fluorophores to excite 
from the ground state to the excited state and arrive at the sample 
simultaneously [81]. The probes could be of two types. Exogenous 
probes like Hoechst or Alexa fluors or endogenous molecules which 
include NADPH or other proteins can serve to generate fluorescent 
signals. MPM follows the second harmonic generation trend whereby 
two or more photons simultaneously transfer their energy to a single 
photon bearing half the wavelength. Some of the key features in MPM 
imaging are: (i) it eliminates out-of-focus fluorescence and produces 
sharper images by limiting the fluorescence excitation to the focus on 
the microscope objective (ii) an additional advantage is the availability 
of a huge variety of fluorophores to choose from for both structural 
and functional imaging (iii) multiple measurements can be taken 
simultaneously 

Figure 11: MPM image of a single neural stem cell (Reprinted with 
permission from: Sebastian Jessberger, University of Zurich)

due to the fact that a single excitation wavelength can be used to excite 
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different fluorophores (iv) Apart from the extrinsic signals, available 
intrinsic signals arising from autofluorophores, can also be used for 
imaging cellular metabolic processes [82]. However MPM suffers with  
a disadvantage in which the tissue area in close proximity with the 
lens may get injured and hence develop immune response or suffer 
mechanical damage [83]. MPM imaging is used to image the brain 
through a thin skull or through the cranial windows. These allow time 
kinetic imaging of the brain which is essential for pharmacological 
treatments and studying chronic brain diseases. Though MPM offers 
high resolution in vivo imaging, yet however the fact that the skull 
needs either to be thinned or a part of it removed to obtain brain 
imaging restricts its applications in the clinical fields.

Applications of MPM

 MPM has been used to study the dynamic deposition of 
A in the brain in Alzheimer’s Disease (AD). Amyloid plaques and 
neurofibrillary tangles are the main pathognomonic features of 
AD [84, 85]. Imaging of the plaques has been possible using MPM. 
Derivatives of thioflavin-T and congo red have been synthesised 
which can cross the bbb and label the plaques [86, 87]. 

Figure12: MPM image of motor neurons of 9 day old mouse 
(Reprinted with permission from: Sebastian Jessberger, University of 
Zurich)

 By utilising these engineered derivatives alongwith high 
signal to noise ratio and huge resolution capacity MPM is able to 
detect and image individual plaques in the brain. Another way 
of labelling the amyloid plaques in the brain is by the usage of 
fluorescent antibodies targeted against it [88].  MPM has also been 
used to study oxidative stress by imaging the reactive oxygen species 
associated with the amyloid plaques. MPM has also revealed a lot 
about amyloid angiopathy whereby MPM determined the structural 
damage and functional disruptions caused to the affected vessels 
as a result of Amyloid deposition in the brain [89, 90].  MPM has 
also been used to study the dynamics of the dendritic spines of the 
hippocampal neurons. This was achieved by two-photon imaging of 
the CA1 pyramidal neurons which were fluorescently labelled [91]. 
MPM has also made it possible to study the plasticity of the dendritic 
spines in vivo. The high resolution ability allows MPM to study cell 

metabolism, synaptic signalling mechanisms, spine morphology 
and dentritic abnormalities associated with brain diseases. MPM 
with its classical neuroimaging technologies provides the additional 
advantage of imaging subcellular structures and neuropathological 
features which were otherwise too tiny to be detected. This sets the 
possibility for high end critical evaluation of these structures for 
improved diagnosis and treatment of brain disorders. Power densities 
on the order of MW/cm2 are required for signal generation. This 
power density generated is reached at the focal plane of the objective 
lens. Optical sectioning, which refers to the confinement of the signal 
to the focal plane reduces any damage to the photo arising due to 
signals from above and below the plane of focus. Less sample damage 
is obtained by using lasers belonging to the femtosecond range which 
possess high peak power, essential for maintaining low average power. 
It follows the equation:
I

2photon
 
signal

 α I2
laser

 α ( P
avg 

/ F
rep

τ )2

Where intensity can be increased with a constant 
repetition rate (F

rep
), and a reduction in pulse width or alternately 

by increasing the average power (P
avg

). This equation therefore 
depicts that shorter pulses are more advantageous in imaging living 
samples. Creating images from the molecular level upto the whole 
organism requires complete information of the depth of the image 
to be able to reconstruct a three dimensional display of the given 
sample. Information on depth can be obtained by optical sectioning, 
by adjusting the microscopic focus further into the sample.

Challenges and Future Prospects of MPM
MPM offers imaging a sample with several fluorophores. 

This causes two disadvantages: from the economic point of view it 
can be very expensive as the cost of usage of several femtosecond 
lasers can be exorbitant which ultimately limits the use to a single 
laser. Further, this technique often requires fine tuning of the 
laser to adjust the wavelength such that the fluorophores can be 
excited simultaneously. Another way to scan a sample sequentially 
can include tuning of the laser to the optical excitation wavelength 
of each fluorophore though this can cause some photo damage 
and compromise the imaging speed. To overcome these issues a 
laser with short pulse width and high bandwidth can be used.   A 
recent collaboration between Thorlabs and IdestaQE have designed 
Octavius-2P, a highly engineered Ti:Sapphire turn-key laser of 10fs 
for multiphoton applications[92]. The advantage of using a 10fs laser 
is the fact that it possesses high peak power and low average power 
which is required for deep tissue imaging with minimum photo 
damage. It is also accompanied with a broad bandwidth laser pulse 
which is absolutely perfect for the excitation of multiple fluorophores 
simultaneously [93].The broadband laser pulses increase the strength 
of the signal generated by the fluorophores without requiring tuning 
the laser at the exact excitation peak. Further, it is noted that the two 
photons required to generate the non linear signal do not require 
being of the same wavelength. This results in complete utilisation 
of the entire spectrum of the laser pulse towards excitation of the 
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fluorophore. If the width of a laser pulse is reduced it leads to an 
increased propensity in the broadening of the temporal pulse due 
to dispersion. This necessitates the design of a microscope with pre-
compensation abilities and minimized dispersion. The NIR excitation 
path does play a role in minimising dispersion, additionally, an 
optional dispersion compensation module (DCOMP-BCU) can be 
added to the existing microscopic system [94]. The DCOMP-BCU 
relies on a new chirped mirror technology which compensate for the 
arising dispersions, which is mapped with the microscope requiring 
no further tuning. 

MPM is therefore an efficient technology for imaging live and 
intact tissues. It has given a rapid boost to research in brain imaging 
and a huge impetus to the commercially available imaging systems. 
The Thorlabs Multiphoton Microscope combined with the Idesta 
Octavius-2P represents a well engineered flexi microscopic system 
towards the latest and most advanced technologies in brain imaging. 
It has achieved desirable capabilities by the concurrent amalgamation 
of current and next-generation technologies in imaging the brain.   

PAT
The average width of the human cortex is about 3mm, but 

the thickness of each of the six layers of the cortex is in the range of 
micrometre hundreds [95]. PAT has the ability to image the brain 
across a varied range of thickness [96]. The spatial resolution of PAT 
can be regulated at both optical and acoustic levels while the depth 
of imaging domain adjusts automatically [97]. PAT qualifies as a high 
resolution imaging application surcompassing a wide range of scale 
length [96]. The ratio between image depth and spatial resolution 
in PAT is approximately 200. PAT can generally be classified on the 
basis of units of imaging depth of optical transport mean free path 
(OTMFP) which ranges from 1mm in the muscles to 0.6mm in the 
brain. Specifically PAT can be classified into three categories based 
on image depth of the target. The three groups are (quasi)ballistic, 
quasidiffusive and diffusive PAT. The imaging depth for the three 
groups (quasi)ballistic < quasidiffusive < diffusive in terms of TMFP 
are 1 TMFP < 1-10 TMFP < 10 or more TMFP, while that in terms 
of mm are .6mm < 0.6 to 6mm < 6mm or more respectively.  This 
exemplifies the expanse of optical scattering tolerance of PAT which 
is a crucial parameter in high-resolution optical imaging. 

(Quasi)ballistic PA Brain Imaging: The typical PAT application in 
the ballistic regime is optical-resolution photoacoustic microscopy 
(OR-PAM) [98]. The structure of an OR-PAM includes an objective 
lens which focuses the excitation laser beam to an optical diffraction-
limited spot. The resultant PA signals are detected by an ultrasonic 
transducer characteristically of a single-element. This ultrasonic 
transducer is usually aligned with the objective lens confocally for 
achieving optimum detection sensitivity. The optical focussing is 
generally 10 times more regulated than acoustic focussing, hence lateral 
resolution of OR-PAM is mainly determined by its optical focussing. 
The axial resolution of OR-PAM is measured by the  detection 
bandwidth of the ultrasonic transducer. As the acoustic attenuation 
that occurs is frequency dependent, the detection bandwith of the 

ultrasonic transducer is usually matched with acoustic path length. 
Lateral resolution of OR-PAM ranges from 220nm to 5µm, while it’s 
imaging depths range from 100µm to 1.2mm [99].

Applications of OR-PAM 
Prefect cortical hemodynamics as an additional platform 

to understand underlying neural activities. High quality resolution 
images of mouse cortical vasculature can be obtained using 
haemoglobin in the red blood cells as the working endogenous 
contrast [100]. 

Imaging a single neuron is also possible using exogenous 
or endogenous contrast. OR-PAM when used with appropriate and 
meticulously selected contrast agents can be used to study physiological 
activities of a single neuron, which include propagation of action 
potential, release of neuro transmitters, and synaptic connections and 
communications between them [101].

Figure 13: Schematic representation of OR-PAM (Reprinted with 
permission from[102] )

Quasidiffusive PA Brain Imaging: It mainly includes targets 
having image depths more than 1 TMFP but less than 10 TMFPs. 
This range of imaging depth makes it an ideal imaging technology 
for whole-brain imaging of small animals. The core principles used in 
quasidiffusive PAT are almost similar to those used in (quasi)ballistic 
PAT. The typical PAT application in the ballistic regime is acoustic-
resolution photoacoustic microscopy (AR-PAM) [103]. The spatial 
resolution achieved by the AR-PAT is approximately 50µm when a 
50MHz ultra transducer is used [104, 105]. Hence it can be classified 
as one of a microscopic modality. Since it can break the diffusion 
limit of the optical domain it is also considered as a “quasidiffusive” 
modality. Both the OR-PAM and the AR-PAM follow the same 
focussing principle, however, the AR-PAM tunes the laser focus at a 
range wider than the ultrasonic focal spot, such that the entire area of 
the ultrasonic focal zone is illuminated well. 

Applications of AR-PAM 
AR-PAM was engineered for imaging mouse cortical vessels 

by keeping both the scalp and the skull intact. A focused ultrasonic 
transducer of 20MHz and a 90% bandwidth has helped AR-PAM 
achieve a lateral resolution of 70µm an imaging depth of more than 
3.6mm into the mouse brain.

Diffusive PA Brain Imaging: The typical PAT application in 
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the diffusive regime is photoacoustic computed tomography (PACT). 

PACT uses an array of transducers to detect simultaneous signals from 

a bigger region of interest which can be exploded with a larger laser 

beam.  A high resolution PACT image is then contstructed by the 

use of an inverse algorithm [106]. This inverse algorithm is a method 

triangulation of sources available from time-resolved acoustic signals. 

The advantage of imaging in PACT is that depending on the target 

organ the transducer array in PACT can be constructed to produce 

varied and desired shapes.  Further PACT is the best suited imaging 

technique for deep brain imaging. A combination of  near-infrared 

(NIR) optical excitation and low frequency ultrasonic detection help 

it to achieve deep penetration of the organ of interest to produce 

high resolution images. PACT has been successful in imaging brain 

structures 8mm beneath the scalp. By using a variant technology 

called thermoacoustic tomography brain images with a resolution of 

4mm can be produced. High resolution and image depth availability 

makes PACT a promising technology for impeccable human brain 

imaging. 

Applications of PACT
A PACT system has been used to an imaging depth of 7cm 

in tissue with the machine operating at 8 MHz, lateral resolution of 
720µm and an axial resolution of 400µm. PAT has been successful in 
producing 2mm thick brain images of rhesus monkeys.  PACT shows 
promise for non invasive brain imaging. 

Molecular Imaging of the Brain using PA
Molecular imaging is a high end technology which enables 

the viewer to visualise both cellular functions at the molecular 

level [107]. Recently a lot of effort has been vested to develop PAT 

imaging technology which is accompanied with better sensitivity, high 

detection, optimization of contrast agents and better spectral mixing. 

Research community has now come up with a new technology referred 

to as the multispectral optoacoustic tomography  for PA molecular 

imaging [108]. The difference between PA molecular imaging with 

that of traditional PA imaging is that in PA molecular imaging probes 

are conjugated with the particular targeting molecule and further 

imaged for the particular pathway. However brain imaging has always 

been a challenge more, so because of the presence of the blood-

brain barrier (bbb) which poses an additional problem for PA brain 

imaging. Ideal PA molecular brain imaging requires the movement of 

the contrast agents across the bbb, which is a difficult feat to achieve. 

Several measures have been taken to overcome this hurdle, these 

include physically or chemically unravelling the BBB, direct delivery 

into the cerebro-spinal fluid, and intrinsic carrier mediated active 

transport. Of these active transport of agents is by far the most safest 

procedure for example 2-NBDG, a glucose analog, can be transported 

across the BBB via glucose transport protein GLUT. The only 

disadvantage is the fact that only a very small number of molecules 

can be actively transported across the bbb.  Nanoparticles could also 

be a transporting agent of choice here. However, nanoparticles used 

for this purpose need to be specifically engineered with very small size 

>10nm and favourable peak absorption wavelength. The endeavour 

for an ideal nanoparticle for PAT imaging to cross the bbb is still on. 

Functional analysis of the brain using PAT
PAT has been used for functional brain imaging on multiple 

aspects. PAT provides information on brain oxygenation levels. PAT 

is sensitive to both oxygenated and deoxygenated haemoglobin. 

Hence it can differentiate between increased blood oxygenation and 

decreased blood perfusion. Blood oxygenation is a positive indicator 

of increased neural activity. Another important indicator of brain 

activity is brain metabolism [109]. Faster consumption of glucose 

and oxygen indicate strong neural impulses and action potential. 

Hence tracking these elements can provide information on brain 

metabolism. PAT is able to measure changes in glucose and oxygen 

levels with high resolution and at a low cost.  Full ring-array PACT 

system has been adopted to study resting-state connectivity of the 

brain. Several researchers have applied PACT to study the intricacies 

of brain injury and function using small animal models [110].

Challenges and Future Prospects of PAT
With much higher resolution and multifaceted functional 

analysis capability PAT is surely the most exciting brain imaging 

option today [111, 112]. Clinical translation of PAT to image the 

human brain is an exhilarating direction in the field of brain imaging. 

It promises to provide a better understanding of the neural processes 

and cognitive abilities of the brain [113]. The main obstacle in PAT 

human brain imaging is the fact that the human skull is the thickest (7 

to 11mm) as compared to other animal models. This skull is therefore 

capable of distorting signals and absorbing and scattering light thus 

interfering with the imaging technology [114]. The severe aberration 

of the acoustic signals caused by the skull can significantly deteriorate 

the quality of the constructed image [115]. Research community is 

applying engineering improvements to overcome this problem [116].  

In order to optimize the delivery of the incident light a novel photon 

cycler has been developed. This photon cycler recycles the photons 

back scattered by the skull thus reducing the loss of efficiency and 

intensity of the incident light.  These photons are recycled back to 

the brain where they are available to generate PA signals. Concerted 

efforts are also being made to improve the distortions of the acoustic 

signals. This can be achieved by combining ultrasonic computed 

tomography with PACT for correcting the disparity in the speed 

of sound (SOS) within the field of interest. This holds promise in 

improving the image quality.  High scalability and functional imaging 

ability of PAT will provide a whole new experience of looking into the 

brain when in resting condition or in a disorder.
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Technology Principle Advantages Disadvantages

EEG

Electrodes are used to detect 
brain activity. These electrodes are 
placed on the head of the patients. 
These electrodes then record the 
electrical charge generated by the 
neurons when they are transferring 
information in the brain.  

Requires no surgery or invasive 
technique.
Safe for the patient.

Provides valuable information about 
sleep research in humans. 

The result is only very qualitative. 
It does not provide a true detailed 
analysis of brain function. 
Since the electrodes are placed on 
the head, the exact neurons to be 
detected are 
untraceable, the procedure 
involves assessing several other 
unaccountablde neurons. 

MEG

Electrodes are used to detect brain 
activity. The electrodes are placed 
on the head of the patients. These 
electrodes then record the changes 
in the magnetic field generated 
by the neurons when they are 
transferring information in the 
brain.  

Requires no surgery or invasive 
technique.
Safe for the patient.

Provides valuable 
information about sleep research in 
humans.

The result is only very qualitative. 
It does not provide a true detailed 
analysis of brain function. 
Since the electrodes are placed on 
the head, the exact neurons to be 
detected are 
untraceable, the procedure 
involves assessing several other 
unaccountablde neurons.

PET

Radioactive glucose is fed to the 
patient. This radioactive glucose 
when in the blood stream reaches 
the brain. Once in the brain, it is 
metabolised for energy release. The 
utilisation of the radioactive glucose 
releases gamma rays which are then 
detected by the radiation detectors. 
The signals generated by the 
detectors are then processed into 
colourful image showing regions of 
brain activity. 

It can record signals generated from 
an active brain in real time manner.
 
It can be beneficial in detecting 
changes in the brain activity at an 
early stage of a disease. Hence it is 
more sensitive than MRI  or CT 
scans.

It is expensive. The intake of the 
radioactive material may be harmful 
for some patients. The results are 
not absolutely precise.
The colour generated in 
computerised image does not give 
a very detailed picture of the brain 
activity. 

CT

A continuous source of X ray beam 
is passed through the head. The 
images are captured on a sensitive 
X ray plate. These series of images 
creates a structural image of the 
brain.   
Computes signals received from X - 
ray technology

Clearly depicts structural damage to 
the brain. 

Does not have any implication on 
brain function. 
The impact of exposure to X ray can 
be of concern to the patient.
Cost is Reasonable.

fMRI

Works on the principle that active 
areas of the brain require more 
oxygen. On the cellular level it 
means neuronal activity in specific 
regions of the brain implicate more 
blood supply to that region of the 
brain.
The images can provide ideas 
about the specific region of the 
brain which the patient uses for 
performing a task. The resultant 
image is a three dimensional brain 
structure which is computed by 
analysing both radio and electrical 
signals.  

The data produced is far more 
specific than that obtained from the 
PET.

Resolution of image is high.

The resultant image provides 
information about both anatomical 
and functional aspects of the brain. 

The focus of the data is mainly 
on localised area of the brain. 
This procedure does not take into 
consideration the actual dispersed 
nature of the neuronal population. 
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MPM

Multiphoton microscopy, relies 
on the principle of simultaneous 
absorption of two or more photons 
by a fluorophore. It allows real-time 
observation cells and molecules 
while they are still intact within 
tissues.

With MPM it is possible to image 
dynamic biological processes over a 
period of days or weeks. 

MPM provides an additional 
advantage of imaging live tissues by 
improving the depth of penetration 
and so helps in reducing further 
photodamage. MPM can provide 
superior quality of resulting image.

MPM can provide exceptionally 
large penetration with equally less 
phototoxicity.

It is highly expensive.
The problem of simultaneous 
activation of the various wavelengths 
used persists.

PAT

PAT provides information 
on brain oxygenation levels. PAT 
is sensitive to both oxygenated 
and deoxygenated haemoglobin. 
Hence it can differentiate between 
increased  blood oxygenation and  
decreased blood perfusion. Blood 
oxygenation is a positive indicator 
of increased neural activity. Another 
important indicator of brain activity 
is brain metabolism [110]. Faster 
consumption of glucose and oxygen 
indicate strong neural impulses 
and action potential. Hence 
tracking these elements can provide 
information on brain metabolism. 
PAT is able to measure changes in 
glucose and oxygen levels with high 
resolution and at a low cost. 

High scalability and 
functional imaging ability of PAT 
provide a whole new experience 
of looking into the brain when in 
resting condition or in a disorder.

The skull acts as a 
physical hindrance in PAT imaging. 
It is capable of distorting signals 
and absorbing and scattering light 
thus interfering with the imaging 
technology

Conclusion
Brain imaging technologies not just help in viewing the 

brain at a multiscalar level but also create a better understanding of 
it for the development of improved diagnostics and therapeutics of 
brain diseases. Several technologies have been developed so far to 
accomplish the mission of brain imaging. Each developed technique 
is a better and an advanced version of the previous technology. PAT 
is the recent brain imaging technology which promises to bring in 
breakthrough data in the forthcoming years.  Considering PAT’s 
highly scalable spatial resolution, huge imaging speed, wide range of 
penetration depth, and improved functionality, it acts as a promising 
tool for fundamental neurophysiological research and applications in 
clinical neurology.
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