
1

Introduction
Diabetes mellitus (DM) has become a major public health 

problem possessing complex etiology implicating 350million people 
all over the world. Anticipated incidence by 2045 is 700 million 
[1]. It is 6th major cause of death in US as well as correlated with 
escalated chance for cardiac disease, renal disease, eye involvement 
including blindness, limb gangrenes [2]. DM can be classified as type1 
diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), as well 
as gestational diabetes mellitus (GDM) [3]. Commonest diagnosis 

is T2D, where 90% of the subjects fall in T2D category ,occurring 
secondary to abnormal generation of insulin, chronic low grade 
inflammation in person’s tissues, that include adipose tissues ( AT), 
liver and muscles [4]. T1D occurs secondary to insulin generating 
cells being short secondary to autoimmune impairment of pancreatic 
islet beta cells [5]. Earlier we have reviewed the etiopathogenesis as 
well as the treatment strategies of both T1DM as well as T2DM [6-11]. 
Right now no definite treatment for either of the DM group exists, 
thus alternative treatment for DM is urgently needed.
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Review Article

Abstract

We have earlier reviewed both etiopathogenesis along with therapy of both type1 diabetes mellitus (DM) (T1D) as well as (T2D) thoroughly along with 
advances in therapy. Despite that, there is no permanent cure and with the growing epidemic of obesity and thus the parallel enhancement of worldwide 
prevalence. Extracellular vesicles(ECV) by definition are physiologically bilayer vesicles that carry bioactive receptors, lipids, proteins as well as nucleic acids 
which cross-react with target cells, driving the modification of target cells. Maximum cells liberate ECV as well as recently have been shown to not only work as 
promising biomarkers for the disease but work as therapeutic agents for some diseases. ECV represent a heterogeneous population of small membrane vesicles 
(30-2000nm) liberated from various types of activated or apoptotic cells. In view of their ability of carrying out cell-cell communication , lot of significance 
has been given to them regarding their role as biomarkers or as utilization for therapy by trying to overtake cell-based therapy. DM T1D or T2D both if 
uncontrolled for long have the potential of causing a lot of complications like kidneys, cardiac, neuronal, eyes, feet problems ending with chronic end-stage 
kidney disease, blindness, stroke, myocardial infarction (MI) , erectile dysfunction, diabetic foot ulcers and gangrene , hence some permanent methods are 
sought to cure these. Here we conducted a systematic review utilizing the MeSH terms; Type1Diabetes mellitus; T2D; stem cells sources for DM therapy; 
exosomes; Extracellular vesicles; treatment potential in DM by utilizing the search engine Pubmed, Google Scholar, Web of science, Embase, Cochrane 
review library from 2000 to 2020. We found a total of 550 articles out of which we selected 128 articles for this review. No meta-analysis was carried out. 
Here we have tried to discuss the details of what are EVs, how they can be obtained, their contents, mechanism of actions in curing diabetes along with its 
complications like diabetic wound healing, diabetic retinopathy, diabetic nephropathy, stroke, diabetic peripheral neuropathy along with diabetic foot ulcers, 
erectile dysfunctions. Further the place clinically in trials we have reached in utilizing clinically as well as challenges faced in translation as well as bulk 
generation, methods utilized for their preservation. Hopefully, these will be overcome gradually and soon can get translated into clinical medicine.

Keywords: Type1 diabetes mellitus; T2D; Extra cellular vesicles; chronic end stage kidney disease; diabetic wound healing; diabetic 
retinopathy; diabetic nephropathy; stroke; diabetic peripheral neuropathy.
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Cell based treatment is another way of DM treatment. Stem cells 
or immune cells have been used for treatment of DM [12-15]. Extra 
cellular vesicles (ECV) by definition are physiologically bilayered 
vesicles that carry bioactive receptors , lipids , proteins as well as nucleic 
acids which cross-react with target cells , driving the modification of 
target cells. Maximum cells liberate ECV as well as recently have been 
shown to not only work as promising biomarkers for disease but work 
as therapeutic agents for some diseases [16]. Hence EVS liberated by 
stem cells or immune cells have got lot of attention. It has been shown 
that these EVs possess a lot of treatment potential by getting their 
cargo into target cells as well as acting on various signalling pathways 
[17]. EVS act as signalling mediators among cells, that include islet 
cells, only recently became popular as candidate for DM therapy as 
well as its complications.

Extracellular Vesicles (ECVs)
Extracellular vesicles (ECVs) are fast developing areas in 

biomedical research as well as clinical translational medicine.

Classification as well as Generation
ECVs represent a heterogeneous population of small membrane 

vesicles (30-2000nm) liberated from various types of activated or 
apoptotic cells. Depending on their size as well as origin , EVs have 
been classified into 3 major groups (i) exosomes ,microvesicles (MV’s) 
as well as apoptotic bodies [18] (Figure1).

Figure 1: Scheme the biogenesis of EVs
Multivesicular bodies (MVB) are formed during endosomal 

maturation, and exosomes are released upon fusion of the MVBs 
with the plasma membrane. Differently, microvesicles are formed 
directly through cell membrane budding and fission. The apoptotic 
bodies are derived from the apoptotic cells [128].

Exosomes get obtained from the endocytic compartment as 
well as vary from 30-100nm in size. Particularly the cell’s plasma 
membrane gets internalized to form an early endosome. Next, 
intraluminal vesicles (ILV) pinch the endosomal lining membranes 
inwards as well as bud into the endosome. Selected proteins as well 
as RNA’s then get packed into the ILVs via the endosomal sorting 
complex needed for transport (ESCRT-dependent machinery or 
ESCRT independent machinery. The endosome is now generating 
a multivesicular body (MVB). Consequently, a partial number of 
MVB get digested via fusion with lysosomes, whereas others fused 
with plasma menmbrane via unknown mode that implicates RAB -27 

as well as soluble NSF (N-ethylmaleimide- sensitive factor) attachment 
protein receptor (SNARE) proteins. These payloads ILVs get liberated 
into the extracellular membrane (ECM) as exosomes [19-20]. Though 
the particular mode is still not clear, it seems that the growth factor 
will facilitate the formation of MVBs. The cell modifies its generation 
of exosomes along with its requirements [21]. Exosomes get 
surrounded by a bilayer of phospholipids enriched with ceramides as 
well as cholesterol. The surface molecules anchored in the exosomes 
membrane include adhesion molecules integrins as well as intracellular 
adhesion moleculesn (ICAMs), tetraspanin proteins (CD9, CD63 as 
well as CD81) as well as immunity association, molecules (MHC-I 
as well as MHC-II). The cytoplasm of an exosomes includes ESCRT-
associated proteins (apoptosis linked gene-2 interacting protein X 
(ALIX) as well as tumor susceptibility 101 (TSG101, RNA’S mRNA, 
microRNAs, long noncoding RNA (lncRNA), cytoskeletal proteins 
(actin as well as tubulin) as well as metabolic enzyme glyceraldehyde 
3-phosphate dehydrogenase (GADPH) as well as ATPase [22-23]. 
Moreover exosomes possess certain particular molecules which are 
based on their original cells. Like researchers discovered exosomal 
MHC molecules, liberated by dendritic cells, cross reacting with T 
cells, to stimulate antitumor immunity [24].

Isolation as well as properties
Although MV’s as well as exosomes are generated by a variety 

of modes, maximum isolation methods are unable in isolating a 
pure population in view of their size overlap. Thus, a variety of ECV 
isolation methods have got proven that are ultracentrifugation, 
density gradient centrifugation, ultrafiltration, polymer dependent 
precipitation, size exclusion chromatography (SEC) as well as 
microfluidic device isolation [25].
•	 Ultracentrifugation isolation depends on the size of the EVs 

classically made up of sequential escalation of centrifugal forces 
to pellet cells as well as debris (<-2000xg), large ECVs (-10,000-
20,000xg) as well as small EVs (100,000-200,000xg)

•	 Density gradient centrifugation isolation is based on the size as 
well as mass density for isolating ECV’s.

•	 Ultrafiltration isolation depends on the size of the EVs, where 
samples get passed via) a membrane that possesses particular 
pore size via pressure or centrifugation.

•	 Polymer dependent precipitation depends on the application 
of a polymer solution, like polyethylene glycol (PEG), to reduce 
solubility of EVs, as well as force their precipitation.

•	 Immuno precipitation isolation is when monoclonal antibodies 
immobilized on the surface of a plate or beads to capture these 
ECVs.

•	 Size exclusion chromatography depends on the size of the EVs 
that get separated with the aid of utilizing a column. Main ECVs 
get eluted prior to the soluble compounds. 

•	 Microfluidic device isolation based on the designed device 
isolation is challenging, in view of this every one having 
advantage as well as disadvantages.

Kulvinder K K et al., (2020) 1: 001-013DOI: 10.47755/J Clin DiabetesObes.2020.1.001
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Following isolation, EVs populations require to get divided on 
Properties of ECVs. (i) Utilizing transmission electron microscopy 
(TEM), (ii) Scanning (SEM), (iii) nanoparticle tracking analysis (NTA), 
(iv) Dynamic light scattering (DLS), (v)the size of ECV’s [26]. Western 
blotting as well as enzyme-linked immunosorbent assays represents an 
easy technique for deciding Properties of EVs, utilizing certain classical 
biomarkers like CD9, CD63, CD81, ALIX, as well as TSG101 [27]. These 
techniques get utilized to recognize as well as label ECV’s based on their 
properties. Right now flow cytometry has found to be luring method 
for ECV’s evaluation. Maximum current flow cytometry methods can 
pick up particles greater than 500nm. Thus, the EVs must be bound to 
antibodies or surface latex beads with a size which can be picked up in 
the range of the flow cytometer [28]. The latest flow cytometry method 
(alias, nanoscale flow cytometry )is markedly sensitive as well as allows the 
direct evaluation of single EV as well as protein profile as low as 40nm 
[29]. Moreover, if the markers that have been picked up as markers on a 
single EV, nanoscale flow cytometry will aid us in labelling the Properties 
of innovative particular subpopulations of EVs as well as the diagnostic 
markers on EVs. With these labelling of Properties might aid in gaining 
insight of EV biology as well as early diagnosis of disease [30]. Thus 
nanoscale flow cytometry will form a very robust method for further EV 
research as well as disease diagnosis.

Target cells crosstalk with EVs
The treatment ability of EVs is based on their capacity to crosstalk 

with the target cells. Different modes exist by which EVs crosstalk with the 
target cells (Figure 2). One such mode is the liberation of molecules from 
the EVs, which crosstalk with the surface molecules of the target cells to 
stimulate their signalling. Like, it was observed that tumor cell -liberated 
EVs carry programmed death ligand 1 (PDL1) on their surface that 
crosstalk with the programmed death 1 (PD1) receptors existing over T 
cells to evoke an immune checkpoint [31]. On the other hand, EVs might 
influence the targeted cells via the internalization as well as a transfer 
of their cargos. Besides that, lot of opinions over the mode via which 
internalization of the exosome takes place, like via membrane fusion, 
receptor-based endocytosis, micropinocytosis or phagocytosis [32]. These 
last 2 modes, namely (micropinocytosis as well as phagocytosis) might 
aid in the clearance of EVs. Direct proof of EVs fusing as well as getting 
endocytosed into recipient cells has been received by utilizing lipophilic 
dye labelled EVs, leading to escalation of the fluorescence of the recipient 
cells. This kind of real-time imaging method yields significant lessons 
regarding the examination of EV internalization [33].

Figure 2: Uptake of EVs

EVs are taken up by the targeted recipient cells via the fusion of 
the vesicle membrane with the cellular membrane or by endocytosis the 
receptor and its ligand on EVs

Role of EVs as a treatment mode for DM as well as its 
complications
Lot of morbidity as well as mortality results secondary to DM as 
well as its complications, all over the world, giving an estimated 
4.2 million deaths secondary to DM in 2019 [34]. As a cell free 
treatment EVs work as a robust candidate.

T1DM as well as EVs
T1DM as reviewed earlier represents a chronic disease having the 
properties of insulin deficit secondary to autoimmune damage of 
the insulin –liberating pancreatic β-cells, resulting in hyperglycemia. 
Usually the symptomatic onset takes place in childhood. Though the 
mode of T1D is still not clear , the etiopathogenesis of this disease 
is believed to get modulated by aberrations in lot of immune cells, 
that include T cells , B cells, regulatory T cells (Treg), monocytes as 
well as macrophages (Mo/M), disease as well as Dendritic cells 
(DC’s).

Whereas lot of daily injections of exogenous insulin aid in T1D 
patients to control their blood sugars , this basically does not influence 
the basic immune aberration as well as hence does not represent cure 
for TID. In view of possessing same function as their parent cells, 
EVs as treatment mode has been an attractive mode for research. 
MSC’S –obtained EVs for the therapy of an autoimmune diabetic 
mouse model adoptive transfer T1D mouse model got utilized via 
Shigemoto Kuroda et al. [35] as well as saw that a delay in the onset 
of T1D via inhibition of T cell proliferation as well as suppression 
of the activation of antigen presenting cell (APC) . Additionally 
, Nojendahl et al. [36], showed that intraperitoneal injection of 
bone marrow (BM)-derived MSC’S(BMMSC)- obtained exosomes 
were able to abrogate inflammatory reaction in streptrozotocin 
(STZ)- stimulated T1D mouse model via enhancement of Treg cells 
population. Later Favaro et al. [37], found that MSC’S –obtained 
EVs stimulated the conversion of monocytes via T1D patients into 
immature interleukin -10 (IL-10) liberating DC’s in vitro, probably 
aiding in the inhibition of inflammatory T cell responses to islet 
antigens in an STZ-induced T1D rat model . Furthermore these 
therapeutic EVs besides ameliorating inflammatory T cell responses 
in T1D, has a significant part in β-cells regeneration. Menstrual 
blood-obtained –MSC (MenSC)-derived exosomes escalated the 
β-cells mass as well as insulin generation as per Mahdipour et al. [38], 
via the pancreatic as well as duodenal box 1(PDX1) pathway in a STZ-
induced T1D mouse model. As per Tsukita et al.[39], documented 
that BM-cell – obtained EVs possess miRNA’s (miR-106b-5p as well 
as miR-222-3p) which had the ability to enhance β- cell proliferation 
via downregulation of the CIP/calcium as well as integrin binding 
protein (KIP) pathway . Additionally, the EVs showed an important 
part in enhancing the islet transplantation result. Human (h) 
BMMSC as well as peripheral blood mononuclear cells( PBMC) 
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cocultured exosomes , for enhancing the islet allograft survival in 
humanized NOD scid IL-2Rϒnull (NSG) mice [40]. Sun et al. quite 
recently documented that EVs obtained from mouse pancreatic 
β-cells line MIN-6 could enhance insulin amount of pancreatic islets 
as well as preserve the architecture of the islets within STZ-induced 
diabetic mice [41]. Hence EVs show translational capacity for T1D 
treatment as well as future evaluation is needed prior to clinically 
applying them.

Type 2 DM as well as EVs
Type 2 diabetes is the maximum prevalent diabetic form, having 
the properties of 2 alterations that are dependent on each other, 
namely insulin resistance (IR) as well as of pancreatic islets β-cells 
impairment [42]. T2D occur secondary to a crosstalk among 
genetic, environmental, emotional, as well as behavioural risk 
factors. Earlier hypoglycaemic drugs delivery as well as insulin 
injection was the initial treatment for T2D [43]. Intriguingly 
current studies demonstrated that certain EVs may possess their 
ability of treatment of T2D. Intravenous injection of EVs that had 
been isolated from human umbilical cord MSCs partly converted 
IR through indirect enhancement of glucose metabolism as well as 
abrogating β-cells damage in streptozotocin (STZ)-induced diabetic 
rats with a high fat diet (HFD) as demonstrated by Sun et al. [44]. 
For finding the mechanism of action it was seen that EVs i) restored 
phosphorylation of insulin resistance substrate 1 (IRS1) as well as 
protein kinase B( PKB) in T2D rats, ii) facilitated the expression 
of translocation of glucose transporter 4 (GLUT4) in muscle, as 
well iii) sustained glucose homeostasis through escalating glycogen 
storage in liver. Additionally, they observed that MSC- obtained 
EVs aided in improving β-cells damage for restoration of insulin 
liberation in T2D rats. Zhao et al. [45], in another work treated 
obesity (HFD induced) mice with EVs that were adipose derived 
stem cells (ADSC) –derived as well observed that these EVs had 
the ability to polarize macrophages into anti-inflammatory Type 2 
macrophages (M2) phenotypes by activation of signal transducer 
of activation and transcription 3 (STAT3) pathway that ultimately 
upregulated the expression of arginase 1 (ARG1) in macrophages, 
thus enhancing both metabolic balance as well as IR in mice.

Furthermore, an innovative stem cells source exist known 
as cord-blood derived multipotent stem cells (CB-SCs), as well as 
monocyte-obtained stem cells [46]. Both in vitro as well as animal 
experiments showed that CB-SCs possess a robust therapeutic 
ability for DM [47]. On the basis of their special characteristics of 
immune modulation as well as the capacity to tightly stick to the 
petri dishes surface, a new technology was formed by the group of 
Hu et al., named Stem Cell Educator (SCE) treatment, in clinical 
trials for the treatment of TI [48], T2D [49] as well as autoimmune 
–caused alopecia areata [50]. At the time of SCE therapy, the 
PBMC get retrieved as well as circulated via a cell separato as well 
as cocultured with adherent CB-SCs in vitro. Subsequently these 
so called ‘’educated ‘’cells then get returned back to the patient’s 
circulation via a closed loop system. Through the clinical trials it 

has already been shown regards to safety as well as effectiveness 
of these SCE therapies for treatment of DM. Subsequent study 
of CB-SCs demonstrated that these liberate exosomes possessing 
an immune modulation function akin to that of the original cells, 
that stimulate monocytes to differentiation into anti-inflammatory 
Type 2 macrophages (M2) [51]. CB-SCs-obtained exosomes showed 
besides the mode of SCE therapy, the lucrative materials it is for 
therapy of DM.

Additionally, besides these EVs possessing treatment capacity 
for DM, certain candidates are present which might be applied in 
future. Human Tregs are necessary for sustainance of peripheral 
tolerance, avoid autoimmunity, as well as minimize chronic 
inflammation [52]. The protocol that has been well proven regards 
to the amplification of Tregs in vitro gave researchers the ability of 
isolating EVs from the Tregs-cultured conditional medium [53]. As 
per Aiello et al.[54] showed that EVs-obtained from the Tregs- caused 
immune suppression on T-cell proliferation as well as prolonged 
kidney allograft survival in a mouse model. Tregs- obtained EVs-
stimulated DC’s to attain a tolerogenic phenotype, with enhanced IL-
10 as well as reduced IL-6 generation .Moreover myeloid – obtained 
suppressor cells (MDSC) represent a heterogenous population of 
cells which expand at the time of cancer, inflammatory diseases 
as well as autoimmune conditions was shown by Tung et al. [55]. 
They possess a marked capacity of suppressing immune responses 
[56]. MDSC- obtained EVs demonstrated immune modulation 
by inhibition of T-cell proliferation as well as facilitation of Tregs- 
expansion that avoided propagation as well as was enough for part 
hair regrowth in case of alopecia- areata (AA) mouse model. These 
observations with regards to immune modulation function of EVs- 
point therapeutic ability in DM.

EVs as well as DM complications
Basically DM Complications occur secondary to high glucose 
stimulated cellular as well as molecular dysfunction of neural as 
well as cardiovascular system (CVS). Currently, EVs have been 
considered as robust therapeutic candidates for treatment of DM. 
Treatment that combined gingival MSC (GMSC).

Wounds related to DM
In cases of DM, the hyperglycaemic surroundings result in wounds 
which heal slowly or refuse to heal, thus cause a serious problem for 
health care in the clinical setting . Precise etiopathogenesis of delayed 
Wound healing in patients with DM is not clear. Nevertheless, both 
human as well as animal experiments display dysfunctions at time 
of Wound healing process [57]. Risk of infection escalates with 
dysfunction at the time of Wound healing, thus increasing Wound 
healing remains an immediate attention in DM. A proangiogenic 
protein known as deleted in malignant tumor1 (DMBT1),was 
observed by Chen et al. [58], which was enriched in EVs from urine 
-obtained SC’S(USC’s). In vivo studies demonstrated that DMBT1 
had the ability to facilitate angiogenesis as well as wound healing in 
diabetic mice.

DOI: 10.47755/J Clin DiabetesObes.2020.1.001 Kulvinder K K et al., (2020) 1: 001-013
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Moreover, MSC’S –obtained from various sources remain 
lucrative cells for isolation of EVs with regards to therapeutic 
applications in case of wounds secondary to DM. Li et al. [59], 
documented that EVs - obtained from nuclear factor erythroid 2 like 
2(NRF2)- overexpressed adipose deirved stem cells (ADSCS) had the 
ability to facilitate cutaneous Wound healing through enhancing 
vascularisation in a rat model of diabetic foot ulcers. Functional 
Assays showed that EVs decreased inflammation cytokines (IL-6, 
IL-1β as well as tumor necrosis factor alpha (TNFα) as well as 
oxidative stress –associated proteins that EVs - from microRNA-126 
overexpressing synovium MSCs (SMSCs) facilitated migration as 
well as tube generation of HMEC-1 cells in vitro as demonstrated 
by Tao et al. [60]. These EVs increased the rate of wound healing at 
the functional level by facilitation of re-epithelialization, stimulating 
angiogenesis, as well as forming mature collagen. In the same way 
Ding etal. [61] documented that EVs - obtained from desferoxamine 
-stimulated h BMMSCs delivered their exosomal miRNA-126 for 
downregulation of phosphatase as well as tensin homolog (PTEN) 
that stimulated angiogenesis in vitro as well as escalated wound 
healing in STZ- induced diabetic rats. Moreover Li et al [62] 
observed that an lncRNA’s known as lncRNA 19H in exosomes 
obtained from MSCs avoided apoptosis as well as inflammation 
in fibroblasts by interfering with miRNA-152-3p-modulated PTEN 
inhibition, resulting in wound healing stimulation in a rat model 
of diabetic foot ulcers. Treatment that combined gingival MSCs 
(GMSCs) –obtained exosomes with chitosan/silk hydrogel resulted 
in better Wound healing in a diabetic rat skin defect model that 
received treatment with only chitosan/silk hydrogel. These GMSCs- 
obtained exosomes facilitated Wound healing by facilitating re-
epithelialization, angiogenesis, as well as neuronal ingrowth in 
diabetic rats [63].

EVs- obtained from umbilical cord-blood obtained endothelial 
progenitor cells (UCB-EPC’s)that facilitated angiogenesis of 
endothelial cells via activation of extracellular signal –regulated 
kinase (ERK)1/2 signaling as documented by Zhang et al [64]. 
This resulted in escalated cutaneous Wound healing as well as 
regeneration in a diabetic rat model. Akin to this, a study showed 
that EPC’s- obtained exosomes increased the rate of Wound healing 
in diabetic rats by stimulation of endothelial cell proliferation 
as well as migration by escalating the amount of angiogenesis-
associated molecules, like fibroblast growth factor1 (FGF1), vascular 
endothelial growth factor 1 (VEGF-A), vascular endothelial growth 
factor1 receptor 2 (VEGFR2) as well as angiopoitin ( ANG1) [65].
Additionally, to these stem/progenitor cells- obtained EVs, other 
EVs could be utilized for therapy of diabetic Wounds. In a study 
it was shown that macrophages- obtained EVs increased the rate 
of Wound healing by causing anti-inflammatory actions as well as 
enhancing endothelial cell function in a diabetic rat model [66]. Guo 
et al. [67], demonstrated that platelet Rich plasma (PRP) - obtained 
EVs facilitated the healing event in a diabetic rat model. Work 
conducted for seeking molecular modes displayed that PRP- obtained 

EVs stimulated the migration as well as proliferation of fibroblast 
as well as endothelial cell for enhancing re-epithelialization as well 
as angiogenesis through activation of Rho-yes associated protein 
(YAP) signalling pathway in the diabetic rat model. Geiger et al. 
[68] observed that EVs obtained from human fibrocytes increased 
the rate of Wound healing in diabetic mice. They facilitated 
angiogenesis, caused activation of fibroblasts, as well as escalated 
the function of keratinocytes by carrying exosomal miRNA’s (miR-
126, miR-130a, miR-132) as well as anti-inflammatory miRNA’s 
(miR-124a as well as miR-125b). Moreover artificial EVs that were 
loaded with particular biomolecules gave a new way of therapy of 
diabetic Wounds. Workers observed that various biomolecules 
were markedly decreased in DM that included the lncRNA 19 H as 
well as miR-126. In a study it was demonstrated that artificial EVs-
mimetic nano vesicles (EMNVs) that were loaded with the lncRNA 
19H had a robust ability to bring back the regeneration-inhibiting 
actions of hyperglycemia as well as could significantly increase the 
rate of wound healing in a diabetic rat model [69]. Summarizing, 
these studies utilized various EVs as their methods that had great 
efficacy in facilitating Wound healing as well as could be formed as 
other way of clinical in future.

Stroke in DM
In DM enhanced vascular permeability, that results in enhanced 
morbidity correlated with ischemic stroke [70]. Furthermore, 
changes in metabolism as well as enhanced inflammation, that 
causes stroke pathology as well as worsened vascular as well as 
white matter (WM) damage following a stroke that makes it more 
problematic for treatment of brains of DM pts [71]. Venkat et al. 
[72] documented that therapy with brain endothelial cell obtained 
EVs had the ability to markedly enhance the neurological as well 
as cognitive function in T2D –stroke mice. These enhancements 
might have enhancements of densities of axon, myelin as well as 
blood vessel’s along with polarization of anti-inflammatory Type 
2 macrophages (M2) differentiation. Studies for deciphering 
mechanism of action showed that endothelial cell obtained EVs 
enhance miR-126 as well as might aid in the EVs-manifested retrieval 
of neuronal function as well as axonal outgrowth. The commonest 
complications of T2D are stroke as well as cardiovascular disease 
(CVD) that significantly enhance patient’s mortality risk [73]. 
Venkat et al. documented that therapy with EVs obtained from the 
-cord- blood – obtained CD133+SC had the ability to ameliorate 
post stroke cardiac impairment in T2D –stroke mice via reducing 
the myocardial cross –sectional area as well as interstitial fibrosis, 
downregulation of transforming growth factor beta (TGFβ) as well 
as amount of Type 1 macrophages (M1), as well as upregulation of 
miR-126 expression in heart of T2D –stroke mice [74].

Retinopathy as well as T2D
Diabetic Retinopathy (DR) represents a robust T2D complications 
as well as main reason of loss of vision in case of middle aged as well 
as elderly people. Hyperglycemia is thought to have a significant 
part in the formation as well as propagation of DR. DR shows 

DOI: 10.47755/J Clin DiabetesObes.2020.1.001 Kulvinder K K et al., (2020) 1: 001-013



6

the microvascular deficits, neuroretinal impairments as well as 
degeneration of the retina [75]. EVs obtained from MSCs recently, 
demonstrated treatment capacity for therapy of DR. Safwat et al. 
[76] documented that intraocular or subconjunctival (although 
not Intravenous injection) of EVs obtained from ADSCs could 
shield retinal tissue structure from degeneration of the STZ)-
induced model of a diabetic Retinopathy in rabbit. In the same way 
in a study it was demonstrated that intravitreal injection of EVs 
obtained from MSCs were efficacious in decreasing the amounts 
of inflammatory markers like IL-1β, IL-18 as well as caspase 1 
in the vitreous humor of the STZ -induced diabetic rats. At the 
functional level, EVs obtained from MSCs possessing miR-126 to 
have a necessary part in reverting the effects of inflammation by the 
inhibition of the high mobility group box 1 (HGMB1). Moreover 
the author observed that EVs obtained from miR-126 overexpressed 
MSCs had greater efficaciousness in decreasing inflammation in 
case of Diabetic Retinopathy [77].

Cardiomathy as well as T2D
Diabetic Cardiomathy by definition is diabetes-correlated alterations 
in the structure as well as function of the myocardium that involves 
roughly 12% of diabetic subjects as well as cause heart failure as 
well as death. Wang et al. [78] displayed that HSP-20 overexpressing 
Cardiomyocytes obtained EVs possessing escalated amounts of HSP-
20 could shield endothelial cells as well as Cardiomyocytes from 
hyperglycemia stimulated stress in vitro. An in vivo study observed 
that the of HSP-20 -rich EVs at functional level had the capacity 
to abrogate hyperglycemia stimulated cardiac bad remodelling 
via significantly enhancing the left ventricular internal diameter 
at the end-diastole (LVIDd), the left ventricular ejection fraction 
(LVEF%), as well as the density of myocardial blood vessels in STZ 
-induced diabetic mice. EVs obtained from MSCs had the capacity 
to retrieve left ventricular collagen(LVC) was documented by a study 
as well as decreased the expression of fatty acid (FA) transporters 
(FATPs) as well as FA β-oxidase in STZ -induced diabetic rats. 
Trying to evaluate the mechanism of action displayed that EVs 
obtained from MSCs inhibited the TGF-β/SMAD family member2 
(SMAD2) signalling pathway ,that had a significant part in the EVs 
-correlated enhancement in DM –induced myocardial damage as 
well as fibrosis [79].

Neuropathy as well as T2D
Diabetic peripheral Neuropathy (DPN) represents one of the 
commonest chronic complications of DM, initiating with sensory 
loss in distal nerves [80]. EVs got implicated recently for improving 
Neuropathy impairment in DM. Schwann cells(SCs)- that are the of 
maximum quantity in the peripheral nervous system( PNS) , cross 
react with axons as well as blood vessels for controlling peripheral 
nerve function[81]. SCs obtained exosomes significant enhanced 
Neuronal regeneration in vitro as well as facilitated regeneration 
following sciatic nerve damage in vivo [82]. Moreover, Wang et 
al. [83] documented that EVs obtained from SCs (SCs-Exos)-
markedly abrogated DPN by enhancing sciatic nerve conduction 

velocity as well as enhancing thermal as well as mechanical velocity 
along with enhancing thermal as well as mechanical sensitivity 
in a diabetic mouse model. Molecular evaluation of sciatic nerve 
tissues displayed that functionally SCs-Exos treatment reverses DM-
decreased miR-21, miR-27a, as well as miR-146a amounts ,along 
with Diabetes –enhanced Semaphorin 6A(SEMA6A), PTEN as 
well as nuclear factor κ-B (NF-ΚB)amounts. Besides SCs-Exos, EVs 
from SC’s further demonstrated therapeutic function in DPN. 
In case of diabetic mice therapy of DPN by EVs obtained from 
MSCs cured neurovascular impairment as well as facilitated the 
functional improvement, as per Fan et al. [84], that resulted in an 
enhanced amount of intraepidermal nerve fibers, myelin thickness 
as well as axonal diameters. Western blotting evaluation moreover 
showed that therapy with EVs obtained from MSCs decreased the 
inflammation response by reducing the amount of M1 as well as 
enhancing the amount of M2 macrophages, respectively.

Cognitive impairment as well as T2D
Significant proof is there that Diabetes is related to decrease in 
Cognitive function causing dementia in both subjects with both 
T1D as well as T2D. In case of T2D there exists about 1.5-2.5 
times escalation in the chances of dementia as well as has been 
correlated with memory defects, executive function impairment, 
attention, and processing as well as motor speed [85]. Certain EVs 
were implicated which could enhance Cognitive function in case of 
Diabetes individuals currently. Nakano et al.[86], demonstrated that 
intracerbroventricular injection of EVs obtained from BMMSCs 
had the ability of improving Diabetes stimulated Cognitive 
dysfunction in a STZ -induced mouse model. On histological 
evaluation it was demonstrated that, whereas these EVs failed to 
enhance the amount of neurons, they did inhibit the oxidative 
stress as well as escalated the synaptic density in the CA1 area of the 
hippocampus. In the same way Zhao et al. [87], demonstrated that 
intracranial injection of EVs obtained from BMMSCs abrogated 
Diabetes stimulated Cognitive impairment, where the EVs-receiving 
group displayed a smaller escaping delay in a water maze experiment 
in STZ -induced diabetic mice. Further, a study demonstrated that 
EVs obtained from miR-146a-loaded brain endothelial cells injected 
into the brain ventricles of T2D db/db mice had the ability of partly 
resurrecting short term memory function as well as downregulation 
of prion protein (PrPc) that collects in brain cells of diabetic model 
mice [88]. These outcomes pointed that EVs might prove to be 
an attractive for therapy of Cognitive dysfunction stimulated by 
Diabetes.

Erectile dysfunction secondary to Diabetes
Erectile dysfunction (ED) is a relatively usual as well as less realized 
Diabetes complication. Escalated incidence has been documented 
regards to ED in subjects with Diabetes. Furthermore ED appears 
in the form of a symptom 10 years prior as well as presents greater 
resistance to therapy as compared to nondiabetic subjects [89]. In a 
recent study it was documented that EVs obtained from SCs could 
be utilized for abrogating ED in an animal model. Intracavernosal 
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injection of EVs from ADSCs had the ability to facilitate the recovery 
of ED as shown by Chen et al. [90], by inhibition of apoptosis of 
corpora cavernosal endothelial as well as smooth cells rat model of 
diabetic ED. In the same way a study observed that EVs obtained 
from ADSCs managed to restore ED in a STZ -induced diabetic rats. 
Bioinformatic evaluation observed that EVs possess antifibrotic 
miRNA’s (miR-let7b as well as miR-let7c) along with preganglionic 
miRNA’s (miR-126, miR-130a, miR-132) that had the ability of 
downregulation of the amount of fibrosis as well as enhanced 
angiogenesis in the cavernosum [91]. Intriguingly, USCs possessed 
a significantly abrogating impact on ED as illustrated by Ouyang et 
al. [92], on a STZ -induced rat model of diabetic ED. On dissecting 
the mechanism of action of these EVs it was documented that these 
were loaded with a unique class of miRNA’s, that included miR-21-
5p, the let7 family as well as miR-10 family, family as well as miR-
3family as well as, miR-148a-3p. Also Kwon et al. [93], documented 
that embryonic- Stem Cell obtained Extra cellular vesicles mimetics 
(ESC-NV’s ), that got formed by cells expelled through serial filters 
possessing reducing size (10, 5 as well as 1µm), had the capacity 
to totally restore Erectile function in STZ -induced diabetic mice. 
On histological evaluation it was documented that these ESC-
NV’s stimulated neural regeneration in the corpus cavernosum in 
diabetic restored cavernosum endothelial, smooth muscle cells, as 
well as pericyte amount. Summarizing EVs (Stem Cell obtained) 
possess a positive as well as might be applicable in clinical diabetic 
patients in the future. 

Nephropathy as well as T2D
Diabetic Nephropathy (DN) represents one of the worst Diabetes 
complications as well as remains the commonest etiology of end stage 
renal disease (ESRD) that is the last stage of chronic renal disease 
(CKD) [94]. At present haemodialysis or transplantation are the 
commonest modes for treatment of ESRD. There are drawbacks for 
both methods that include costly as well as organ availability being 
totally uncertain [95]. MSC obtained EVs have been considered to 
be an attractive therapy for DN recently. A previous study observed 
that MSCS enhanced DN via paracrine action of kidney trophic 
factors, which included EVs in both STZ as well as HFD -induced 
diabetic mice. These EVs caused an antiapoptotic action as well 
as shielded tight junction structure in tubular epithelial cells [96]. 
In the same way Grange et al. [97] observed that the delivery of 
EVs obtained from both BMMSCS, as well as human liver stem 
like cells (HLSCs) significantly enhanced renal function in case of 
diabetic mice. On histological evaluation it was documented that 
renal fibrosis which formed at the time of DN propagation got 
significantly inhibited as well as restored to normal in EVs therapy 
group. On deciphering mechanism of action it was displayed that 
these EVs possess particular miRNA’s, that that downregulated 
profibrotic gene expression that inhibited renal fibrosis in case of 
DN. Moreover, Ebrahim et al. [98] documented that EVs obtained 
from both BMMSCs, significantly improved renal function through 
autophagy stimulation via mTOR signalling pathway in diabetic 

rats. Akin to that Jin et al. [99], documented that that EVs obtained 
from both ADSCs, significantly abrogated DN symptoms through 
exosomal miR-486 that caused inhibition of SMAD1/mTOR 
signalling pathway in podocytes. Additionally, EVs obtained from 
both USCs, had a significant part in therapy of DN. Jiang et al. [100] 
observed that EVs obtained from human USCs, enhanced renal 
function via inhibition of podocyte apoptosis as well as facilitating 
regeneration in case of a type1 diabetic rats. On deciphering 
mechanism of action it was shown that exosomal miR-16-5p had 
the ability of conferring protection by suppression of VEGFA as 
well as the podocyte apoptosis, thus improvement of renal function 
in DN. Subsequently the application of EVs obtained from miR-15-
5p overexpressing human USCs, had capacity of greater efficiency 
in rectifying podocyte function in diabetic rats that gives greater 
understanding with regards to innovative therapies of DN [101]. 
These outcomes pointed that EVs may be an attractive tool with 
regards to therapy of DN.

EVs-dependent clinical trials both ongoing as well as 
finished
Till now , practical utilization of EVs have been translated into 
clinical trials with regards to innovative ways for diagnosis as well 
as therapy of various diseases, that are DM, cancers , infections, as 
well as inflammation or autoimmune correlated diseases [102]. At 
present there are 18 Diabetes- correlated clinical trials. In view of 
carrying MicroRNA’s, lipids as well as proteins belonging to their 
primary cells, maximum of the clinical trials have utilized EVs in 
the form of biomarkers for determining the clinical diagnosis as 
well as to monitor the disease propagation post therapy. Nassar et al 
[103] utilized the intra articular injection of mesenchymal stem cell 
derived EVs of 20 cases of CKD at stages III as well as IV.10 of these 
patients were Diabetic. This therapy documented that that therapy 
with EVs, markedly improved the estimated glomerular filtration 
rate (EGFR) as well as the total renal failure in grade III as well as 
IV. Further they posited a clinical trial (number nNCT02138331), 
for the therapy of renal disease utilizing mesenchymal stem cell 
derived EVs .Similarly clinical trials are ongoing utilizing these EVs 
for treatment of inflammation or other immune –impairment –
correlated diseases . MSCs- derived EVs might display equivalent 
treatment capacity in view of similar MSCs- secretome possessing 
cytokines, chemokines as well as anti- inflammatory factors. More 
optimization in relation to Clinical trials is required with clinical 
grade EVs to further propagate treatments based on utilization of 
EVs –dependent cell- free therapy.

Longterm considerations for further development
Despite EVs showing significant treatment capacity, the translation 
of EVs into clinical utilization has not been clear in lot of matters.

Mass formation of EVs
Translation of EVs into clinical utilization needs large quantity 
formation of Clinical grade EVs. For massive quantity production 
of EVs, there are 2 matters that have to be clarified i)the formation 
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of large amount of cells as well as ii) the retention of the cell or 
phenotype of the EVs [104]. For enhancing the cell culture, 
researchers have utilized T-flasks as cell culture surfaces of stimulated 
cells with different stimuli. These methods nevertheless may alter 
the composition as well as function of EVs [105]. Moreover 3D 
cultures method was utilized by Haraszti et al for maximizing the 
surfaces area of cell culture like microcarriers in stirred bioreactors 
or bioreactors with hollow fiber bioreactors system [106]. 
Nevertheless, these methods have their own drawbacks in view of 
alterations in the environmental conditions in the reactors will alter 
the phenotype of the cell as well as the EVs obtained from them. 
A lot of factors might implicate the quantity as well as a quality 
of the cell supernatant – obtained EVs; namely (i) cellular density, 
(ii) early or later passage of cells, (iii) O2 amount, (iv) cytokines or 
heparin as well as medium development [106]. Like it was observed 
by researchers that EVs obtained from early passage of BMMSCs 
displayed greater efficiency of Neuroprotective effects as compared 
to later passage obtained EVs [107]. Scientists pointed that EVs 
obtained from 3-5 passages of cells for Clinical utilization, since 
they had equivalent functions as well as abilities as MSCs [108]. 
However, the medium development in the form of main barrier 
for EVs clinical translational application. Fetal bovine serum (FBS), 
like RNA’s possessing EVs, influences the cultured cells behaviour. 
Serum free cultured media can alter the composition of EVs 
proteins [109]. For resolution of these problems, Scientists apply 
platelet lysate with EV depleted medium for culturing hBM-MSCs, 
maintaining their phenotype as well as differentiation ability of SC 
as well as making sure that RNA’s profile of EVs remains unaltered 
[110]. Such protocol gives a separate method for large scale GMP-
dependent EVs generation.

Clinical grade EVs Isolation as well as preservation
At present, no state of the art –methods to generate EVs in 
huge clinical scales for therapeutic utilization. Despite the 
ultracentrifugation isolation technique represents the ‘’ gold 
standard’’ regarding exosomes isolation, the drawback of this 
is the low yield regards to clinical grade EVs isolation. Even rest 
of the techniques remain nonsuitable for this clinical grade EVs 
isolation in view of chemical reagent /antibody contamination 
or low purity. Currently scientists have applied the ultrafiltration 
for concentrating the condition medium that gets followed by size 
exclusion chromatography (SEC) for deriving EVs [111]. With this 
kind of isolation technique offers much greater yield along with 
more preservation of the biological characteristics of the EVs 
thus has like a magnet lured scientist’s attention as far as clinical 
utilization is concerned [112].

No particular standard protocol exists as far as preservation 
of isolated clinical grade EVs exists regards to future utilization. 
Cryopreservation utilizing Cryopreservants, like glycerol as well as 
dimethyl sulfoxide(DMSO) ,do not represent the ideal technique 
regards to EVs preservation. One Study observed that 5% glycerol 
as well as 1% DMSO partly or totally lysed these EVs [113]. Till 

date a lot of groups have utilized phosphate buffered saline (PBS) 
regsrds to storage buffer for conservation of EVs functional as well 
as physical characteristics. Nevertheless, the minimal amount of 
Calcium included in EVs would result in generation of nanosized 
Calcium phosphate microprecipitates within the PBS that might 
interfere with quantification [114]. With regards to the temperature 
needed for preservation for EVs, scientists have documented 
that EVs remain more stable at -80 as well as -200C as compared 
to storing at 40C or higher temperature [115]. Otherwise certain 
researchers utilized lyophilisation of EVs for prolonging their shelf 
life as well as reducing storage demand along with cost factor. Here, 
the best storage temperature documented regarding lyophilised EVs 
s was at 40 C [116].

Getting EVs targeted to Cells
 Specificity of EVs towards their targeted cells was illustrated by 
Denzer et al. [117]. MHC Class II that was expressed by the EVs 
stick to the follicular dendritic cells (FDC) as well as their liberated 
exosomes as well as could induce proliferation of particular T 
lymphocytes in vitro, although they do not get expressed by FDC by 
themselves. Whereas the dependence of targeting EVs from Platelet 
transfer tissue factor to monocytes as well as endothelial cells but 
not to neutrophils [118]. Whereas the dependence of targeting 
EVs remains unclear, certain molecular or cell dependent targets 
have come out. Changes in the presence of recipient cells, surface 
molecules on EVs as well as the physiological status of the recipient 
cells modulated the specificity of EVs internalization to recipient 
cells caused decrease in EVs internalization [119].

To correct a metabolic condition, or facilitate tissue 
regeneration in DM or its complications EVs need to be directed 
as well as monitored by the proper correct cells as well as then get 
internalized. For these EVs that are directed to correct the target 
cells, the technique of EVs delivery needs to be addressed at the 
time of treatment. Like treatment with MSCs- EVs via Intravenous 
injection did not restore the impairment, but subconjunctival 
injection totally resurrected the impairment in case of Diabetic 
Retinopathy. The variety of delivery routes of EVs showed separate 
therapeutic actions. Most of these studies concentrated on the 
functional alterations, without bothering to clarify the Extracellular 
target by these EVs. For tracing EVs at the time of ex vivo or in 
vivo studies, scientists, tried labelling EVs with lyophilic dyes 
that included PKH26, PKH67, DIO, as well as DID for tracking 
these EVs targeted cells [120]. Utilizing the fluorescence dye DIO-
labeled stem cells CB-SC -obtained exosomes, they observed that 
exosomes preferred to bind to CD14+ monocytes in human PBMC, 
resulting in an upregulation of the mitochondrial membrane 
potential for treated monocytes as well as differentiation into type 
2 macrophages. Other study utilized PKH67 -labelled EVs as well 
as observed that their incorporation into skin tissue enhanced rate 
of Wound healing in vivo. These lipophilic dyes give a strong tool 
regarding experimenting EVs targeting as well as guide regards to 
EV selection based on the particular cell target.
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Manipulation of EV
Whereas it is obvious that EVs possess efficacy in various kinds of 

disease models, for ensuring administration of these EVs to the 

sites of their treatment action, while limiting the collection at off 

target areas, a lot of attention is escalating their characteristics of 

EVs that might aid in reducing dosage or reduce the frequency 

of administration. Various techniques of EVs have been used like 

engineering, priming, loading as well as artificial EVs [121]. Linking 

of EVs to a hydrogel through a photo-cleavable –linker, that upon 

further stimulation, stimulates the controlled liberation of exosomes 

for facilitation of wound healing in a murine model. Additionally, a 

study primed EVs by exposing MSCs to the inflammatory cytokines 

interferon –ϒ-, following which the liberated EVs had greater 

efficacy with regards to acute lung injury model [122]. Moreover 

MicroRNA’s-181a was overexpressed in Mesenchymal Stem Cells, 

followed by collection of MicroRNA’s-181a loaded exosomes that 

demonstrated higher effectiveness for the treatment of ischaemia 

–reperfusion injury [123].

For deriving clinical grade EVs on a huge scale, scientists posit 

that design as well as a construct totally synthetic EVs-mimetic 

particles using bio nanotechnology. Like researchers saw that the 

amounts of APO2 ligand (APO2L) alias (TNF-related apoptosis– 

inducing ligand (TRAIL) got drastically decreased in synovial fluid 

in patients with rheumatoid arthritis (RA). Subsequently, they 

conjugated APO2L with artificial lipid vesicles that mimicked 

Exosomes, that downregulated the T cell activation in an antigen 

stimulated arthritis animal model [124]. Ultimately scientists 

have managed to get live embryonic Stem Cells extrude through 

a microfilter , producing nanovesicles, that display therapeutic 

activity regarding Wound healing [125]. Besides having the capacity 

to produce multiple cell lineage(like osteoblast as well as adipocytes), 

MSCs have got further the ability of enhancing tissue regeneration, 

angiogenesis , as well as anti-inflammatory via liberation of cytokines, 

chemokines, growth factors, as well as EVs [126]. Of these the MSCs- 

secretome, MSCs-obtained EVs have got the recognition of being 

strong ways which might be able to take over from MSCs in the 

form of a cell-free therapy. For furthering this therapeutic capacity 

of EVs in drug administration as well as regenerative medicine, 

parenteral MSCs might be genetically manipulated for generation 

of growth factors-loaded EVs for therapy. With regards to this Li et 

al. [127], documented that Exosomes isolated from adipose derived 

stem cells (ADSCS) had the ability to facilitate proliferation as well 

as angiogenesis of endothelial progenitor cells (EPC). Significantly 

treatment with Exosomes from genetically manipulated ADSCS 

could significantly enhance Wound healing, the amounts of 

growth factors expression, as well as an anti-inflammatory actions 

in Diabetic rats following overexpression of the transcription 

factors nuclear factor erythroid 2 like 2 NRF2 in ADSCS [59], that 

illustrated a shielding part in a Diabetic Nephropathy model [128].

Conclusions
EVs have shown a robust translational ability for the treatment of 
Diabetes along with correlated complications (Figure3). Certain 
ongoing clinical trials are there for finding out the safety as well 
as clinical effectiveness. Clinical utilization continues to emphasize 
certain practical problems of utilizing clinical grade EVs. Future 
evaluations are required for making it clear the composition of 
these EVs biomolecules, i.e. both proteins as well as RNA are from 
separate cell or tissue obtained EVs for their particular therapeutic 
capacity resulting in the formation of bioengineered EVs. The 
studies regarding mechanism of action with regards to their crosstalk 
with target cells will promote the clinical practicalities of EVs for the 
treatment of Diabetes as well as other diseases.

Figure 3: Therapeutic potential of EVs for the treatment of diabetes and 
complications [128]
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